Most cited article - PubMed ID 37642209
Ultrafast Laser Pulse Induced Transient Ferrimagnetic State and Spin Relaxation Dynamics in Two-Dimensional Antiferromagnets
Exploring ultrafast magnetization control in 2D magnets via laser pulses is established, yet the interplay between spin dynamics and the lattice remains underexplored. Utilizing real-time time-dependent density functional theory (rt-TDDFT) coupled with Ehrenfest dynamics and nonadiabatic molecular dynamics (NAMD) simulations, we systematically investigate the laser-induced spin-nuclei dynamics with pre-excited A1g and E2g coherent phonons in the 2D ferromagnet Fe3GeTe2 (FGT) monolayer. Selective pre-excitation of coherent phonons under ultrafast laser irradiation significantly alters the local spin moment of FGT, consequently inducing additional spin loss attributed to the nuclear motion-induced asymmetric interatomic charge transfer. Excited spin-resolved charge undergoes a bidirectional spin-flip between spin-down and spin-up states, characterized by a subtle change in the spin moment within approximately 100 fs, followed by unidirectional spin-flip, which will further contribute to the spin moment loss of FGT within tens of picoseconds. Our results shed light on the coupling of coherent phonons with magnetization dynamics in 2D limit.
- Keywords
- Fe3GeTe2, laser-induced coherent phonon, nuclei dynamics, real-time TDDFT, ultrafast spin dynamics,
- Publication type
- Journal Article MeSH
Despite spin (SAM) and orbital (OAM) angular momentum dynamics being well-studied in demagnetization processes, their components receive less focus. Here, we utilize real-time time-dependent density functional theory (rt-TDDFT) to unveil significant x and y components of SAM and OAM induced by circularly left (σ+) and right (σ-) polarized laser pulses in ferromagnetic Fe, Co, and Ni. Our results show that the magnitude of the OAM is an order of magnitude larger than that of the SAM, highlighting a stronger optical response from the orbital degrees of freedom of electrons. Intriguingly, σ+ and σ- pulses induce chirality in the precession of SAM and OAM, respectively, with clear associations with laser frequency and duration. Finally, we demonstrate the time scale of the OAM and SAM precession occurs even earlier than that of the demagnetization process and the OISTR effect. Our results provide detailed insight into the dynamics of SAM and OAM during and shortly after a polarized laser pulse.
- Publication type
- Journal Article MeSH