Nejvíce citovaný článek - PubMed ID 37689787
The relationship between geographic range size and rates of species diversification
The parasite island syndrome denotes shifts in parasite life histories on islands, which affect parasite diversity, prevalence and specificity. However, current evidence of parasite island syndromes mainly stems from oceanic islands, while sky islands (i.e. mountains isolated by surrounding low-elevation habitats) have received limited attention. To explore the parasite syndrome in Afrotropical sky islands, we examined haemosporidian blood parasites and their bird hosts in two Afromontane regions in Cameroon. Analysing more than 1300 bird blood samples from the Bamenda Highlands and Mount Cameroon, we found considerably reduced parasite lineage diversity and total prevalence in Mt Cameroon, but not in the Bamenda Highlands. We found highly specific parasite-host interactions at both sites and these associations showed significant phylogenetic congruence, suggesting that closely related parasites infect phylogenetically related hosts. These parasite-host associations tend to be shaped mainly by duplications, switches, losses and failures to diverge rather than through co-speciation events. Overall, the high specificity and parasite-host association differences at local scales largely agree with the limited insights from other sky islands. Yet the drivers of these interactions differ geographically, suggesting that unique dynamics of fragmentation and isolation of montane habitats can lead to similar patterns of host-parasite interactions that are shaped by different underlying drivers.
- Klíčová slova
- Cameroon, avian malaria, parasite island syndrome, parasite–host networks, taxon cycles,
- MeSH
- fylogeneze MeSH
- Haemosporida * fyziologie MeSH
- hostitelská specificita MeSH
- interakce hostitele a parazita * MeSH
- nemoci ptáků * parazitologie epidemiologie MeSH
- ostrovy MeSH
- protozoální infekce zvířat * parazitologie epidemiologie MeSH
- ptáci * parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Kamerun MeSH
- ostrovy MeSH
Range size is a universal characteristic of every biological species, and is often assumed to affect diversification rate. There are strong theoretical arguments that large-ranged species should have higher rates of diversification. On the other hand, the observation that small-ranged species are often phylogenetically clustered might indicate high diversification of small-ranged species. This discrepancy between theory and the data may be caused by the fact that typical methods of data analysis do not account for range size changes during speciation. Here we use a cladogenetic state-dependent diversification model applied to mammals to show that range size changes during speciation are ubiquitous and small-ranged species indeed diversify generally slower, as theoretically expected. However, both range size and diversification are strongly influenced by idiosyncratic and spatially localized events, such as colonization of an archipelago or a mountain system, which often override the general pattern of range size evolution.
- MeSH
- analýza dat * MeSH
- horní končetina MeSH
- nesouhlas a spor * MeSH
- savci genetika MeSH
- vznik druhů (genetika) MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH