Most cited article - PubMed ID 37732776
Multi-environment ecogenomics analysis of the cosmopolitan phylum Gemmatimonadota
Axenic cultures are essential for studying microbial ecology, evolution, and genomics. Despite the importance of pure cultures, public culture collections are biased towards fast-growing copiotrophs, while many abundant aquatic prokaryotes remain uncultured due to uncharacterized growth requirements and oligotrophic lifestyles. Here, we applied high-throughput dilution-to-extinction cultivation using defined media that mimic natural conditions to samples from 14 Central European lakes, yielding 627 axenic strains. These cultures include 15 genera among the 30 most abundant freshwater bacteria identified via metagenomics, collectively representing up to 72% of genera detected in the original samples (average 40%) and are widespread in freshwater systems globally. Genome-sequenced strains are closely related to metagenome-assembled genomes (MAGs) from the same samples, many of which remain undescribed. We propose a classification of several novel families, genera, and species, including many slowly growing, genome-streamlined oligotrophs that are notoriously underrepresented in public repositories. Our large-scale initiative to cultivate the "uncultivated microbial majority" has yielded a valuable collection of abundant freshwater microbes, characterized by diverse metabolic pathways and lifestyles. This culture collection includes promising candidates for oligotrophic model organisms, suitable for a wide array of ecological studies aimed at advancing our ecological and functional understanding of dominant, yet previously uncultured, taxa.
UNLABELLED: The first phototrophic member of the bacterial phylum Gemmatimonadota, Gemmatimonas phototrophica AP64T, received all its photosynthesis genes via distant horizontal gene transfer from a purple bacterium. Here, we investigated how these acquired genes, which are tightly controlled by oxygen and light in the ancestor, are integrated into the regulatory system of its new host. G. phototrophica grew well under aerobic and semiaerobic conditions, with almost no difference in gene expression. Under aerobic conditions, the growth of G. phototrophica was optimal at 80 µmol photon m-2 s-1, while higher light intensities had an inhibitory effect. The transcriptome showed only a minimal response to the dark-light shift at optimal light intensity, while the exposure to a higher light intensity (200 µmol photon m-2 s-1) induced already stronger but still transient changes in gene expression. Interestingly, a singlet oxygen defense was not activated under any conditions tested. Our results indicate that G. phototrophica possesses neither the oxygen-dependent repression of photosynthesis genes known from purple bacteria nor the light-dependent repression described in aerobic anoxygenic phototrophs. Instead, G. phototrophica has evolved as a low-light species preferring reduced oxygen concentrations. Under these conditions, the bacterium can safely employ its photoheterotrophic metabolism without the need for complex regulatory mechanisms. IMPORTANCE: Horizontal gene transfer is one of the main mechanisms by which bacteria acquire new genes. However, it represents only the first step as the transferred genes have also to be functionally and regulatory integrated into the recipient's cellular machinery. Gemmatimonas phototrophica, a member of bacterial phylum Gemmatimonadota, acquired its photosynthesis genes via distant horizontal gene transfer from a purple bacterium. Thus, it represents a unique natural experiment, in which the entire package of photosynthesis genes was transplanted into a distant host. We show that G. phototrophica lacks the regulation of photosynthesis gene expressions in response to oxygen concentration and light intensity that are common in purple bacteria. This restricts its growth to low-light habitats with reduced oxygen. Understanding the regulation of horizontally transferred genes is important not only for microbial evolution but also for synthetic biology and the engineering of novel organisms, as these rely on the successful integration of foreign genes.
- Keywords
- Gemmatimonadota, anoxygenic photosynthesis, bacteriochlorophyll, horizontal gene transfer, transcriptomics,
- MeSH
- Bacterial Proteins genetics metabolism MeSH
- Photosynthesis * genetics MeSH
- Gene Transfer, Horizontal * MeSH
- Gene Expression Regulation, Bacterial * radiation effects MeSH
- Light MeSH
- Transcriptome MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Bacterial Proteins MeSH
On circular bacterial chromosomes, the majority of genes are coded on the leading strand. This gene strand bias (GSB) ranges from up to 85% in some Bacillota to a little more than 50% in other phyla. The factors determining the extent of the strand bias remain to be found. Here, we report that species in the phylum Gemmatimonadota share a unique chromosome architecture, distinct from neighboring phyla: in a conserved 600-kb region around the terminus of replication, almost all genes were located on the leading strands, while on the remaining part of the chromosome, the strand preference was more balanced. The high strand bias (HSB) region harbors the rRNA clusters, core, and highly expressed genes. Selective pressure for reduction of collisions with DNA replication to minimize detrimental mutations can explain the conservation of essential genes in this region. Repetitive and mobile elements are underrepresented, suggesting reduced recombination frequency by structural isolation from other parts of the chromosome. We propose that the HSB region forms a distinct chromosomal domain. Gemmatimonadota chromosomes evolved mainly by expansion through horizontal gene transfer and duplications outside of the ancient high strand bias region. In support of our hypothesis, we could further identify two Spiroplasma strains on a similar evolutionary path.IMPORTANCEOn bacterial chromosomes, a preferred location of genes on the leading strand has evolved to reduce conflicts between replication and transcription. Despite a vast body of research, the question why bacteria show large differences in their gene strand bias is still not solved. The discovery of "hybrid" chromosomes in different phyla, including Gemmatimonadota, in which a conserved high strand bias is found exclusively in a region at ter, points toward a role of nucleoid structure, additional to replication, in the evolution of strand preferences. A fine-grained structural analysis of the ever-increasing number of available bacterial genomes could help to better understand the forces that shape the sequential and spatial organization of the cell's information content.
- Keywords
- Gemmatimonadota, gene order, genome evolution, genome organization, strand bias,
- MeSH
- Bacteria genetics classification MeSH
- Chromosomes, Bacterial * genetics MeSH
- DNA, Bacterial genetics MeSH
- Genome, Bacterial MeSH
- Evolution, Molecular * MeSH
- Gene Transfer, Horizontal MeSH
- DNA Replication * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA, Bacterial MeSH
BACKGROUND: Aerobic anoxygenic phototrophs are metabolically highly active, diverse and widespread polyphyletic members of bacterioplankton whose photoheterotrophic capabilities shifted the paradigm about simplicity of the microbial food chain. Despite their considerable contribution to the transformation of organic matter in marine environments, relatively little is still known about their community structure and ecology at fine-scale taxonomic resolution. Up to date, there is no comprehensive (i.e. qualitative and quantitative) analysis of their community composition in the Adriatic Sea. RESULTS: Analysis was based on pufM gene metabarcoding and quantitative FISH-IR approach with the use of artificial neural network. Significant seasonality was observed with regards to absolute abundances (maximum average abundances in spring 2.136 ± 0.081 × 104 cells mL-1, minimum in summer 0.86 × 104 cells mL-1), FISH-IR groups (Roseobacter clade prevalent in autumn, other Alpha- and Gammaproteobacteria in summer) and pufM sequencing data agglomerated at genus-level. FISH-IR results revealed heterogeneity with the highest average relative contribution of AAPs assigned to Roseobacter clade (37.66%), followed by Gammaproteobacteria (35.25%) and general Alphaproteobacteria (31.15%). Community composition obtained via pufM sequencing was dominated by Gammaproteobacteria clade NOR5/OM60, specifically genus Luminiphilus, with numerous rare genera present in relative abundances below 1%. The use of artificial neural network connected this community to biotic (heterotrophic bacteria, HNA and LNA bacteria, Synechococcus, Prochlorococcus, picoeukaryotes, heterotrophic nanoflagellates, bacterial production) and abiotic environmental factors (temperature, salinity, chlorophyll a and nitrate, nitrite, ammonia, total nitrogen, silicate, and orthophosphate concentration). A type of neural network, neural gas analysis at order-, genus- and ASV-level, resulted in five distinct best matching units (representing particular environments) and revealed that high diversity was generally independent of temperature, salinity, and trophic status of the environment, indicating a potentially dissimilar behaviour of aerobic anoxygenic phototrophs compared to the general bacterioplankton. CONCLUSION: This research represents the first comprehensive analysis of aerobic anoxygenic phototrophs in the Adriatic Sea on a trophic gradient during a year-round period. This study is also one of the first reports of their genus-level ecology linked to biotic and abiotic environmental factors revealed by unsupervised neural network algorithm, paving the way for further research of substantial contribution of this important bacterial functional group to marine ecosystems.
- Publication type
- Journal Article MeSH