Nejvíce citovaný článek - PubMed ID 38016637
Evolutionary dynamics of mutants that modify population structure
Moran Birth-death process is a standard stochastic process that is used to model natural selection in spatially structured populations. A newly occurring mutation that invades a population of residents can either fixate on the whole population or it can go extinct due to random drift. The duration of the process depends not only on the total population size n, but also on the spatial structure of the population. In this work, we consider the Moran process with a single type of individuals who invade and colonize an otherwise empty environment. Mathematically, this corresponds to the setting where the residents have zero reproduction rate, thus they never reproduce. The spatial structure is represented by a graph. We present two main contributions. First, in contrast to the Moran process in which residents do reproduce, we show that the colonization time is always at most a polynomial function of the population size n. Namely, we show that colonization always takes at most [Formula: see text] expected steps, and for each n, we identify the slowest graph where it takes exactly that many steps. Moreover, we establish a stronger bound of roughly [Formula: see text] steps for undirected graphs and an even stronger bound of roughly [Formula: see text] steps for so-called regular graphs. Second, we discuss various complications that one faces when attempting to measure fixation times and colonization times in spatially structured populations, and we propose to measure the real duration of the process, rather than counting the steps of the classic Moran process.
- MeSH
- hustota populace MeSH
- lidé MeSH
- mutace MeSH
- počítačová simulace MeSH
- populační dynamika * MeSH
- selekce (genetika) MeSH
- stochastické procesy MeSH
- výpočetní biologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Populations evolve by accumulating advantageous mutations. Every population has some spatial structure that can be modeled by an underlying network. The network then influences the probability that new advantageous mutations fixate. Amplifiers of selection are networks that increase the fixation probability of advantageous mutants, as compared to the unstructured fully-connected network. Whether or not a network is an amplifier depends on the choice of the random process that governs the evolutionary dynamics. Two popular choices are Moran process with Birth-death updating and Moran process with death-Birth updating. Interestingly, while some networks are amplifiers under Birth-death updating and other networks are amplifiers under death-Birth updating, so far no spatial structures have been found that function as an amplifier under both types of updating simultaneously. In this work, we identify networks that act as amplifiers of selection under both versions of the Moran process. The amplifiers are robust, modular, and increase fixation probability for any mutant fitness advantage in a range r ∈ (1, 1.2). To complement this positive result, we also prove that for certain quantities closely related to fixation probability, it is impossible to improve them simultaneously for both versions of the Moran process. Together, our results highlight how the two versions of the Moran process differ and what they have in common.
Natural selection is usually studied between mutants that differ in reproductive rate, but are subject to the same population structure. Here we explore how natural selection acts on mutants that have the same reproductive rate, but different population structures. In our framework, population structure is given by a graph that specifies where offspring can disperse. The invading mutant disperses offspring on a different graph than the resident wild-type. We find that more densely connected dispersal graphs tend to increase the invader's fixation probability, but the exact relationship between structure and fixation probability is subtle. We present three main results. First, we prove that if both invader and resident are on complete dispersal graphs, then removing a single edge in the invader's dispersal graph reduces its fixation probability. Second, we show that for certain island models higher invader's connectivity increases its fixation probability, but the magnitude of the effect depends on the exact layout of the connections. Third, we show that for lattices the effect of different connectivity is comparable to that of different fitness: for large population size, the invader's fixation probability is either constant or exponentially small, depending on whether it is more or less connected than the resident.