Evolutionary dynamics of mutants that modify population structure
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
38016637
PubMed Central
PMC10684346
DOI
10.1098/rsif.2023.0355
Knihovny.cz E-resources
- Keywords
- Moran process, evolutionary graph theory, fixation probability, spatial structure,
- MeSH
- Biological Evolution * MeSH
- Mutation MeSH
- Population Dynamics MeSH
- Probability MeSH
- Selection, Genetic * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Natural selection is usually studied between mutants that differ in reproductive rate, but are subject to the same population structure. Here we explore how natural selection acts on mutants that have the same reproductive rate, but different population structures. In our framework, population structure is given by a graph that specifies where offspring can disperse. The invading mutant disperses offspring on a different graph than the resident wild-type. We find that more densely connected dispersal graphs tend to increase the invader's fixation probability, but the exact relationship between structure and fixation probability is subtle. We present three main results. First, we prove that if both invader and resident are on complete dispersal graphs, then removing a single edge in the invader's dispersal graph reduces its fixation probability. Second, we show that for certain island models higher invader's connectivity increases its fixation probability, but the magnitude of the effect depends on the exact layout of the connections. Third, we show that for lattices the effect of different connectivity is comparable to that of different fitness: for large population size, the invader's fixation probability is either constant or exponentially small, depending on whether it is more or less connected than the resident.
Computer Science Institute Charles University Prague Czech Republic
Department of Applied Mathematics University of Washington Seattle WA 98195 USA
Department of Mathematics Harvard University Cambridge MA 02138 USA
Department of Organismic and Evolutionary Biology Harvard University Cambridge MA 02138 USA
Institute of Science and Technology Austria Am Campus 1 3400 Klosterneuburg Austria
See more in PubMed
Durrett R. 2008. Probability models for DNA sequence evolution. Berlin, Germany: Springer Science & Business Media.
Nowak MA. 2006. Evolutionary dynamics. Cambridge, MA: Harvard University Press.
Broom M, Rychtář J. 2014. Game-theoretical models in biology. Boca Raton, FL: CRC Press.
Moran P. 1962. The statistical processes of evolutionary theory, 1st edn. Oxford, UK: Clarendon.
Nagylaki T. 1992. Introduction to theoretical population genetics, vol. 142. Berlin, Germany: Springer.
Pollak E. 1966. On the survival of a gene in a subdivided population. J. Appl. Prob. 3, 142-155. (10.2307/3212043) DOI
Nagylaki T. 1980. The strong-migration limit in geographically structured populations. J. Math. Biol. 9, 101-114. (10.1007/BF00275916) PubMed DOI
Whitlock MC, Barton NH. 1997. The effective size of a subdivided population. Genetics 146, 427-441. (10.1093/genetics/146.1.427) PubMed DOI PMC
Durrett R, Levin S. 1994. The importance of being discrete (and spatial). Theor. Popul. Biol. 46, 363-394. (10.1006/tpbi.1994.1032) DOI
Komarova N. 2006. Spatial stochastic models for cancer initiation and progression. Bull. Math. Biol. 68, 1573-1599. (10.1007/s11538-005-9046-8) PubMed DOI
Santos FC, Pacheco JM, Lenaerts T. 2006. Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proc. Natl Acad. Sci. USA 103, 3490-3494. (10.1073/pnas.0508201103) PubMed DOI PMC
Lieberman E, Hauert C, Nowak MA. 2005. Evolutionary dynamics on graphs. Nature 433, 312-316. (10.1038/nature03204) PubMed DOI
Antal T, Redner S, Sood V. 2006. Evolutionary dynamics on degree-heterogeneous graphs. Phys. Rev. Lett. 96, 188104. (10.1103/PhysRevLett.96.188104) PubMed DOI PMC
Broom M, Rychtář J. 2008. An analysis of the fixation probability of a mutant on special classes of non-directed graphs. Proc. R. Soc. A 464, 2609-2627. (10.1098/rspa.2008.0058) DOI
Díaz J, Goldberg LA, Mertzios GB, Richerby D, Serna M, Spirakis PG. 2014. Approximating fixation probabilities in the generalized Moran process. Algorithmica 69, 78-91. (10.1007/s00453-012-9722-7) DOI
Adlam B, Chatterjee K, Nowak M. 2015. Amplifiers of selection. Proc. R. Soc. A 471, 20150114. (10.1098/rspa.2015.0114) DOI
Monk T. 2018. Martingales and the fixation probability of high-dimensional evolutionary graphs. J. Theor. Biol. 451, 10-18. (10.1016/j.jtbi.2018.04.039) PubMed DOI
Allen B, Lippner G, Chen YT, Fotouhi B, Momeni N, Yau ST, Nowak MA. 2017. Evolutionary dynamics on any population structure. Nature 544, 227-230. (10.1038/nature21723) PubMed DOI
Venkateswaran VR, Gokhale CS. 2019. Evolutionary dynamics of complex multiple games. Proc. R. Soc. B 286, 20190900. (10.1098/rspb.2019.0900) PubMed DOI PMC
Santos FC, Pacheco JM. 2005. Scale-free networks provide a unifying framework for the emergence of cooperation. Phys. Rev. Lett. 95, 098104. (10.1103/PhysRevLett.95.098104) PubMed DOI
Keeling MJ, Rohani P. 2011. Modeling infectious diseases in humans and animals. Princeton, NJ: Princeton University Press.
Szabó G, Fath G. 2007. Evolutionary games on graphs. Phys. Rep. 446, 97-216. (10.1016/j.physrep.2007.04.004) DOI
Castellano C, Fortunato S, Loreto V. 2009. Statistical physics of social dynamics. Rev. Mod. Phys. 81, 591. (10.1103/RevModPhys.81.591) DOI
Perc M, Gómez-Gardenes J, Szolnoki A, Floría LM, Moreno Y. 2013. Evolutionary dynamics of group interactions on structured populations: a review. J. R. Soc. Interface 10, 20120997. (10.1098/rsif.2012.0997) PubMed DOI PMC
Hadjichrysanthou C, Broom M, Rychtář J. 2011. Evolutionary games on star graphs under various updating rules. Dyn. Games Appl. 1, 386. (10.1007/s13235-011-0022-7) DOI
Mertzios GB, Nikoletseas S, Raptopoulos C, Spirakis PG. 2013. Natural models for evolution on networks. Theor. Comput. Sci. 477, 76-95. (10.1016/j.tcs.2012.11.032) DOI
Galanis A, Göbel A, Goldberg LA, Lapinskas J, Richerby D. 2017. Amplifiers for the Moran process. J. ACM 64, 5. (10.1145/3019609) DOI
Tkadlec J, Pavlogiannis A, Chatterjee K, Nowak MA. 2019. Population structure determines the tradeoff between fixation probability and fixation time. Commun. Biol. 2, 1-8. (10.1038/s42003-019-0373-y) PubMed DOI PMC
Allen B, Sample C, Steinhagen P, Shapiro J, King M, Hedspeth T, Goncalves M. 2021. Fixation probabilities in graph-structured populations under weak selection. PLoS Comput. Biol. 17, e1008695. (10.1371/journal.pcbi.1008695) PubMed DOI PMC
Monk T, Green P, Paulin M. 2014. Martingales and fixation probabilities of evolutionary graphs. Proc. R. Soc. A 470, 20130730. (10.1098/rspa.2013.0730) DOI
Pavlogiannis A, Tkadlec J, Chatterjee K, Nowak MA. 2018. Construction of arbitrarily strong amplifiers of natural selection using evolutionary graph theory. Commun. Biol. 1, 1-8. (10.1038/s42003-018-0078-7) PubMed DOI PMC
Goldberg LA, Lapinskas J, Lengler J, Meier F, Panagiotou K, Pfister P. 2019. Asymptotically optimal amplifiers for the Moran process. Theor. Comput. Sci. 758, 73-93. (10.1016/j.tcs.2018.08.005) DOI
Tkadlec J, Pavlogiannis A, Chatterjee K, Nowak MA. 2021. Fast and strong amplifiers of natural selection. Nat. Commun. 12, 1-6. (10.1038/s41467-021-24271-w) PubMed DOI PMC
Frantz C, Stewart KM, Weaver VM. 2010. The extracellular matrix at a glance. J. Cell Sci. 123, 4195-4200. (10.1242/jcs.023820) PubMed DOI PMC
Hay ED. 2013. Cell biology of extracellular matrix. Berlin, Germany: Springer Science & Business Media.
Walker C, Mojares E. 2018. Role of extracellular matrix in development and cancer progression. Int. J. Mol. Sci. 19, 3028. (10.3390/ijms19103028) PubMed DOI PMC
Gibson WT, Gibson MC. 2009. Cell topology, geometry, and morphogenesis in proliferating epithelia. Curr. Top. Dev. Biol. 89, 87-114. (10.1016/S0070-2153(09)89004-2) PubMed DOI
Kachalo S, Naveed H, Cao Y, Zhao J, Liang J. 2015. Mechanical model of geometric cell and topological algorithm for cell dynamics from single-cell to formation of monolayered tissues with pattern. PLoS ONE 10, e0126484. (10.1371/journal.pone.0126484) PubMed DOI PMC
Radisky D, Muschler J, Bissell MJ. 2002. Order and disorder: the role of extracellular matrix in epithelial cancer. Cancer Invest. 20, 139-153. (10.1081/CNV-120000374) PubMed DOI PMC
Nelson CM, Bissell MJ. 2006. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 22, 287-309. (10.1146/annurev.cellbio.22.010305.104315) PubMed DOI PMC
Brauchle E, Kasper J, Daum R, Schierbaum N, Falch C, Kirschniak A, Schäffer TE, Schenke-Layland K. 2018. Biomechanical and biomolecular characterization of extracellular matrix structures in human colon carcinomas. Matrix Biol. 68, 180-193. (10.1016/j.matbio.2018.03.016) PubMed DOI
Guillot C, Lecuit T. 2013. Mechanics of epithelial tissue homeostasis and morphogenesis. Science 340, 1185-1189. (10.1126/science.1235249) PubMed DOI
Chaffer CL, Weinberg RA. 2011. A perspective on cancer cell metastasis. Science 331, 1559-1564. (10.1126/science.1203543) PubMed DOI
Melissourgos T, Nikoletseas SE, Raptopoulos CL, Spirakis PG. 2022. An extension of the Moran process using type-specific connection graphs. J. Comput. Syst. Sci. 124, 77-96. (10.1016/j.jcss.2021.07.007) DOI
Comins HN, Hamilton WD, May RM. 1980. Evolutionarily stable dispersal strategies. J. Theor. Biol. 82, 205-230. (10.1016/0022-5193(80)90099-5) PubMed DOI
Dieckmann U, O’Hara B, Weisser W. 1999. The evolutionary ecology of dispersal. Trends Ecol. Evol. 14, 88-90. (10.1016/S0169-5347(98)01571-7) DOI
Hutson V, Martinez S, Mischaikow K, Vickers GT. 2003. The evolution of dispersal. J. Math. Biol. 47, 483-517. (10.1007/s00285-003-0210-1) PubMed DOI
Levin SA, Muller-Landau HC, Nathan R, Chave J. 2003. The ecology and evolution of seed dispersal: a theoretical perspective. Annu. Rev. Ecol. Evol. Syst. 34, 575-604. (10.1146/annurev.ecolsys.34.011802.132428) DOI
Ronce O. 2007. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu. Rev. Ecol. Evol. Syst. 38, 231-253. (10.1146/annurev.ecolsys.38.091206.095611) DOI
May RM, Nowak MA. 1994. Superinfection, metapopulation dynamics, and the evolution of diversity. J. Theor. Biol. 170, 95-114. (10.1006/jtbi.1994.1171) PubMed DOI
Olivieri I, Michalakis Y, Gouyon PH. 1995. Metapopulation genetics and the evolution of dispersal. Am. Nat. 146, 202-228. (10.1086/285795) DOI
Heino M, Hanski I. 2001. Evolution of migration rate in a spatially realistic metapopulation model. Am. Nat. 157, 495-511. (10.1086/319927) PubMed DOI
Svoboda J, Tkadlec J, Kaveh K, Chatterjee K. 2023. Coexistence times in the Moran process with environmental heterogeneity. Proc. R. Soc. A 479, 20220685. (10.1098/rspa.2022.0685) DOI
Ohtsuki H, Pacheco JM, Nowak MA. 2007. Evolutionary graph theory: breaking the symmetry between interaction and replacement. J. Theor. Biol. 246, 681-694. (10.1016/j.jtbi.2007.01.024) PubMed DOI PMC
Krieger MS, McAvoy A, Nowak MA. 2017. Effects of motion in structured populations. J. R. Soc. Interface 14, 20170509. (10.1098/rsif.2017.0509) PubMed DOI PMC
Herrerías-Azcué F, Pérez-Muñuzuri V, Galla T. 2019. Motion, fixation probability and the choice of an evolutionary process. PLoS Comput. Biol. 15, e1007238. (10.1371/journal.pcbi.1007238) PubMed DOI PMC
Thalhauser CJ, Lowengrub JS, Stupack D, Komarova NL. 2010. Selection in spatial stochastic models of cancer: migration as a key modulator of fitness. Biol. Direct 5, 1-17. (10.1186/1745-6150-5-21) PubMed DOI PMC
Manem VS, Kohandel M, Komarova N, Sivaloganathan S. 2014. Spatial invasion dynamics on random and unstructured meshes: implications for heterogeneous tumor populations. J. Theor. Biol. 349, 66-73. (10.1016/j.jtbi.2014.01.009) PubMed DOI PMC
Waclaw B, Bozic I, Pittman ME, Hruban RH, Vogelstein B, Nowak MA. 2015. A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature 525, 261-264. (10.1038/nature14971) PubMed DOI PMC
Manem VS, Kaveh K, Kohandel M, Sivaloganathan S. 2015. Modeling invasion dynamics with spatial random-fitness due to micro-environment. PLoS ONE 10, e0140234. (10.1371/journal.pone.0140234) PubMed DOI PMC
Broom M, Hadjichrysanthou C, Rychtář J, Stadler B. 2010. Two results on evolutionary processes on general non-directed graphs. Proc. R. Soc. A 466, 2795-2798. (10.1098/rspa.2010.0067) DOI
Hindersin L, Möller M, Traulsen A, Bauer B. 2016. Exact numerical calculation of fixation probability and time on graphs. Biosystems 150, 87-91. (10.1016/j.biosystems.2016.08.010) PubMed DOI
Möller M, Hindersin L, Traulsen A. 2019. Exploring and mapping the universe of evolutionary graphs identifies structural properties affecting fixation probability and time. Commun. Biol. 2, 1-9. (10.1038/s42003-019-0374-x) PubMed DOI PMC
Pavlogiannis A, Tkadlec J, Chatterjee K, Nowak MA. 2017. Amplification on undirected population structures: comets beat stars. Sci. Rep. 7, 1-8. (10.1038/s41598-017-00107-w) PubMed DOI PMC
McAvoy A, Allen B. 2021. Fixation probabilities in evolutionary dynamics under weak selection. J. Math. Biol. 82, 1-41. (10.1007/s00285-021-01568-4) PubMed DOI
Brendborg J, Karras P, Pavlogiannis A, Rasmussen AU, Tkadlec J. 2022. Fixation maximization in the positional Moran process. In Proc. of the AAAI Conf. on Artificial Intelligence, 28 June, vol. 36, pp. 9304–9312. (10.1609/aaai.v36i9.21160) DOI
Ann Goldberg L, Lapinskas J, Richerby D. 2020. Phase transitions of the Moran process and algorithmic consequences. Random Struct. Algorithms 56, 597-647. (10.1002/rsa.20890) DOI
Alsubaie FS, Khataee H, Neufeld Z. 2023. Modelling of tissue invasion in epithelial monolayers. Life 13, 427. (10.3390/life13020427) PubMed DOI PMC
Kaveh K, Komarova N, Kohandel M. 2014. The duality of spatial death–birth and birth–death processes and limitations of the isothermal theorem. R. Soc. Open Sci. 2, 140465. (10.1098/rsos.140465) PubMed DOI PMC
Hindersin L, Traulsen A. 2015. Most undirected random graphs are amplifiers of selection for birth-death dynamics, but suppressors of selection for death-birth dynamics. PLoS Comput. Biol. 11, e1004437. (10.1371/journal.pcbi.1004437) PubMed DOI PMC
Tkadlec J, Pavlogiannis A, Chatterjee K, Nowak MA. 2020. Limits on amplifiers of natural selection under death-Birth updating. PLoS Comput. Biol. 16, e1007494. (10.1371/journal.pcbi.1007494) PubMed DOI PMC
Durocher L, Karras P, Pavlogiannis A, Tkadlec J. 2022. Invasion dynamics in the biased voter process. arXiv. (http://arxiv.org/abs/2201.08207)
Tkadlec J, Kaveh K, Chatterjee K, Nowak MA. 2023. Evolutionary dynamics of mutants that modify population structure. Figshare. (10.6084/m9.figshare.16910170) PubMed DOI PMC
Colonization times in Moran process on graphs
Amplifiers of selection for the Moran process with both Birth-death and death-Birth updating
Evolutionary dynamics of mutants that modify population structure
figshare
10.6084/m9.figshare. 16910170