Nejvíce citovaný článek - PubMed ID 38052178
Enhancing climate change resilience in agricultural crops
Drought poses a significant threat to global crop productivity and food security. In this study, we aimed to elucidate the impact of drought on transcriptional regulation and alternative splicing in barley (Hordeum vulgare), and to determine whether these transcriptomic alterations correlate with changes in hormonal profiles. We hypothesized that drought stress induces extensive reprogramming of gene expression, including alternative splicing events, and that these molecular responses are accompanied by tissue-specific shifts in hormone levels, ultimately underpinning adaptive responses in both leaves and roots. To test this, we performed RNA-seq and comprehensive hormone profiling on leaves and roots sampled at 25 days after planting under both optimal and drought conditions. Our analysis identified over 6,655 differentially expressed genes, with a substantial subset exhibiting differential alternative splicing. In leaves, drought primarily downregulated photosynthesis-related genes while upregulating pathways involved in water stress and abscisic acid (ABA) signaling. In contrast, roots displayed broader metabolic adjustments and significant isoform switching. Hormone analysis revealed marked ABA accumulation, particularly in roots, alongside organ-specific modulation of jasmonates and auxins. A limited assessment of the rhizosphere microbial community revealed low transcript abundance, underscoring the primacy of intrinsic plant responses. Collectively, these findings provide valuable insights into the multilayered adaptive strategies of barley under drought stress.
- Klíčová slova
- Alternative splicing (AS), Barley, Drought, Hormones, Metatranscriptomics, Transcriptomics,
- MeSH
- alternativní sestřih MeSH
- fyziologická adaptace * genetika MeSH
- fyziologický stres genetika MeSH
- ječmen (rod) * genetika fyziologie metabolismus MeSH
- kořeny rostlin * genetika metabolismus MeSH
- kyselina abscisová metabolismus MeSH
- listy rostlin * genetika metabolismus MeSH
- období sucha * MeSH
- regulace genové exprese u rostlin * MeSH
- regulátory růstu rostlin * metabolismus MeSH
- stanovení celkové genové exprese MeSH
- transkriptom * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina abscisová MeSH
- regulátory růstu rostlin * MeSH
Potato (Solanum tuberosum) is highly water and space efficient but susceptible to abiotic stresses such as heat, drought, and flooding, which are severely exacerbated by climate change. Our understanding of crop acclimation to abiotic stress, however, remains limited. Here, we present a comprehensive molecular and physiological high-throughput profiling of potato (Solanum tuberosum, cv. Désirée) under heat, drought, and waterlogging applied as single stresses or in combinations designed to mimic realistic future scenarios. Stress responses were monitored via daily phenotyping and multi-omics analyses of leaf samples comprising proteomics, targeted transcriptomics, metabolomics, and hormonomics at several timepoints during and after stress treatments. Additionally, critical metabolites of tuber samples were analyzed at the end of the stress period. We performed integrative multi-omics data analysis using a bioinformatic pipeline that we established based on machine learning and knowledge networks. Waterlogging produced the most immediate and dramatic effects on potato plants, interestingly activating ABA responses similar to drought stress. In addition, we observed distinct stress signatures at multiple molecular levels in response to heat or drought and to a combination of both. In response to all treatments, we found a downregulation of photosynthesis at different molecular levels, an accumulation of minor amino acids, and diverse stress-induced hormones. Our integrative multi-omics analysis provides global insights into plant stress responses, facilitating improved breeding strategies toward climate-adapted potato varieties.
- MeSH
- fenotyp MeSH
- fyziologický stres * genetika MeSH
- hlízy rostlin MeSH
- listy rostlin fyziologie MeSH
- metabolomika MeSH
- multiomika MeSH
- období sucha MeSH
- proteomika MeSH
- regulace genové exprese u rostlin MeSH
- Solanum tuberosum * fyziologie genetika metabolismus MeSH
- transkriptom MeSH
- Publikační typ
- časopisecké články MeSH
Urban trees are crucial in delivering essential ecosystem services, including air pollution mitigation. This service is influenced by plant associated microbiomes, which can degrade hydrocarbons, support tree health, and influence ecological processes. Yet, our understanding of tree microbiomes remains limited, thus affecting our ability to assess and quantify the ecosystem services provided by trees as complex systems. The main hypothesis of this work was that tree microbiomes concur to hydrocarbon biodegradation, and was tested through three case studies, which collectively investigated two tree micro-habitats (phyllosphere and tree cavity organic soil-TCOS) under various conditions representing diverse ecological scenarios, by applying different culture-based and molecular techniques and at different scales. The integration of all results provided a more comprehensive understanding of the role of microbiomes in urban trees. Firstly, bacterial strains isolated from the phyllosphere of Quercus ilex were characterized, indicating the presence of Plant-Growth Promoting bacteria and strains able to catabolize PAHs, particularly naphthalene and phenanthrene. Secondly, naphthalene biodegradation on artificially spiked Hedera helix leaves was quantified in greenhouse experiments on inoculated and untreated plants. The persistence of the inoculated strain and community structure of epiphytic bacteria were assessed by Illumina sequencing of V5-V6 hypervariable regions of 16S rRNA gene. Results showed that naphthalene degradation was initially faster on inoculated plants but later the degradation rates became similar, probably because bacterial populations with hydrocarbon-degrading abilities gradually developed also on non-inoculated plants. Finally, we explored bacterial and fungal biodiversity hosted by TCOS samples, collected from six large trees located in an urban park and belonging to different species. Microbial communities were characterized by Illumina sequencing of V5-V6 hypervariable regions of bacterial gene 16S rRNA and of fungal ITS1. Results indicated TCOS as a distinct substrate, whose microbiome is determined both by the host tree and by canopy environmental conditions and has a pronounced aerobic hydrocarbon degradation potential. Overall, a better assessment of biodiversity associated with trees and the subsequent provision of ecosystem services constitute a first step toward developing future new microbe-driven sustainable solutions, especially in terms of support for urban green planning and management policy.
- Klíčová slova
- air pollution mitigation, ecosystem services, hydrocarbon biodegradation, phyllosphere, tree cavity organic soil, tree-related microhabitats, urban trees,
- Publikační typ
- časopisecké články MeSH