Most cited article - PubMed ID 38153203
Amphipathic Helices Can Sense Both Positive and Negative Curvatures of Lipid Membranes
Understanding the molecular mechanisms of pore formation is crucial for elucidating fundamental biological processes and developing therapeutic strategies, such as the design of drug delivery systems and antimicrobial agents. Although experimental methods can provide valuable information, they often lack the temporal and spatial resolution necessary to fully capture the dynamic stages of pore formation. In this study, we present two novel collective variables (CVs) designed to characterize membrane pore behavior, particularly its energetics, through molecular dynamics (MD) simulations. The first CV─termed Full-Path─effectively tracks both the nucleation and expansion phases of pore formation. The second CV─called Rapid─is tailored to accurately assess pore expansion in the limit of large pores, providing quick and reliable method for evaluating membrane line tension under various conditions. Our results clearly demonstrate that the line tension predictions from both our CVs are in excellent agreement. Moreover, these predictions align qualitatively with available experimental data. Specifically, they reflect higher line tension of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS) lipids compared to pure POPC, the decrease in line tension of POPC vesicles as the 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) content increases, and higher line tension when ionic concentration is increased. Notably, these experimental trends are accurately captured only by the all-atom CHARMM36 and prosECCo75 force fields. In contrast, the all-atom Slipids force field, along with the coarse-grained Martini 2.2, Martini 2.2 polarizable, and Martini 3 models, show varying degrees of agreement with experiments. Our developed CVs can be adapted to various MD simulation engines for studying pore formation, with potential implications in membrane biophysics. They are also applicable to simulations involving external agents, offering an efficient alternative to existing methodologies.
- MeSH
- Cell Membrane * chemistry metabolism MeSH
- Phosphatidylcholines chemistry MeSH
- Lipid Bilayers * chemistry MeSH
- Porosity MeSH
- Molecular Dynamics Simulation * MeSH
- Thermodynamics * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 1-palmitoyl-2-oleoylphosphatidylcholine MeSH Browser
- Phosphatidylcholines MeSH
- Lipid Bilayers * MeSH
The transport of molecules across cell membranes is vital for proper cell function and effective drug delivery. While most cell membranes naturally possess an asymmetric lipid composition, research on membrane transport predominantly uses symmetric lipid membranes. The permeation through the asymmetric membrane is then calculated as a sum of the inverse permeabilities of leaflets from symmetric bilayers. In this study, we examined how two types of amphiphilic molecules translocate across both asymmetric and symmetric membranes. Using computer simulations with both coarse-grained and atomistic force fields, we calculated the free energy profiles for the passage of model amphiphilic peptides and a lipid across various membranes. Our results consistently demonstrate that while the free energy profiles for asymmetric membranes with a small differential stress concur with symmetric ones in the region of lipid headgroups, the profiles differ around the center of the membrane. In this region, the free energy for the asymmetric membrane transitions between the profiles for two symmetric membranes. In addition, we show that peptide permeability through an asymmetric membrane cannot always be predicted from the permeabilities of the symmetric membranes. This indicates that using symmetric membranes falls short in providing an accurate depiction of peptide translocation across asymmetric membranes.
- MeSH
- Cell Membrane chemistry MeSH
- Phospholipids * MeSH
- Lipid Bilayers * chemistry MeSH
- Peptides MeSH
- Molecular Dynamics Simulation MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Phospholipids * MeSH
- Lipid Bilayers * MeSH
- Peptides MeSH