Nejvíce citovaný článek - PubMed ID 38862514
Observation of a spontaneous anomalous Hall response in the Mn5Si3 d-wave altermagnet candidate
The anomalous Nernst effect generates a voltage transverse to an applied thermal gradient in some magnetically ordered systems. While the effect was considered excluded in compensated magnetic materials with collinear ordering, in the recently identified symmetry-class of altermagnets, the anomalous Nernst effect is possible despite the compensated collinear spin arrangement. In this work, we show that epitaxial Mn5Si3 thin films grown on Si manifest an anomalous Nernst effect with a finite spontaneous signal at zero magnetic field despite the vanishing spontaneous magnetization. We attribute this to the previously theoretically predicted and experimentally corroborated altermagnetism of epitaxial Mn5Si3 thin films grown on Si. The observed spontaneous anomalous Nernst coefficient reaches the value of 0.26 μV/K with the corresponding spontaneous Nernst conductivity of 0.22 A/(K ⋅ m). To complement our measurements, we perform density-functional theory calculations of the momentum-resolved anomalous Nernst conductivity, highlighting the contributions of altermagnetic pseudonodal surfaces and ladder transitions to the Berry curvature. Our results illustrate the value of unconventional d-wave wave altermagnets composed of abundant and non-toxic light elements for thermo-electrics and spin-caloritronics.
- Publikační typ
- časopisecké články MeSH
Nanoscale detection and control of the magnetic order underpins a spectrum of condensed-matter research and device functionalities involving magnetism. The key principle involved is the breaking of time-reversal symmetry, which in ferromagnets is generated by an internal magnetization. However, the presence of a net magnetization limits device scalability and compatibility with phases, such as superconductors and topological insulators. Recently, altermagnetism has been proposed as a solution to these restrictions, as it shares the enabling time-reversal-symmetry-breaking characteristic of ferromagnetism, combined with the antiferromagnetic-like vanishing net magnetization1-4. So far, altermagnetic ordering has been inferred from spatially averaged probes4-19. Here we demonstrate nanoscale imaging of altermagnetic states from 100-nanometre-scale vortices and domain walls to 10-micrometre-scale single-domain states in manganese telluride (MnTe)2,7,9,14-16,18,20,21. We combine the time-reversal-symmetry-breaking sensitivity of X-ray magnetic circular dichroism12 with magnetic linear dichroism and photoemission electron microscopy to achieve maps of the local altermagnetic ordering vector. A variety of spin configurations are imposed using microstructure patterning and thermal cycling in magnetic fields. The demonstrated detection and controlled formation of altermagnetic spin configurations paves the way for future experimental studies across the theoretically predicted research landscape of altermagnetism, including unconventional spin-polarization phenomena, the interplay of altermagnetism with superconducting and topological phases, and highly scalable digital and neuromorphic spintronic devices3,14,22-24.
- Publikační typ
- časopisecké články MeSH
Recently, MnTe was established as an altermagnetic material that hosts spin-polarized electronic bands as well as anomalous transport effects like the anomalous Hall effect. In addition to these effects arising from altermagnetism, MnTe also hosts other magnetoresistance effects. Here, we study the manipulation of the magnetic order by an applied magnetic field and its impact on the electrical resistivity. In particular, we establish which components of anisotropic magnetoresistance are present when the magnetic order is rotated within the hexagonal basal plane. Our experimental results, which are in agreement with our symmetry analysis of the magnetotransport components, showcase the existence of an anisotropic magnetoresistance linked to both the relative orientation of current and magnetic order, as well as crystal and magnetic order. Altermagnetism is manifested as a three-fold component in the transverse magnetoresistance which arises due to the anomalous Hall effect.
- Klíčová slova
- Magnetic properties and materials, Spintronics,
- Publikační typ
- časopisecké články MeSH