Nejvíce citovaný článek - PubMed ID 39095570
Organic photovoltaic (OPV) cells are at the forefront of sustainable energy generation due to their lightness, flexibility, and low production costs. These characteristics make OPVs a promising solution for achieving sustainable development goals. However, predicting their lifetime remains challenging task due to complex interactions between internal factors such as material degradation, interface stability, and morphological changes, and external factors like environmental conditions, mechanical stress, and encapsulation quality. In this study, we propose a machine learning-based technique to predict the degradation over time of OPVs. Specifically, we employ multi-layer perceptron (MLP) and long short-term memory (LSTM) neural networks to predict the power conversion efficiency (PCE) of inverted organic solar cells (iOSCs) made from the blend PTB7-Th:PC70BM, with PFN as the electron transport layer (ETL), fabricated under an N2 environment. We evaluate the performance of the proposed technique using several statistical metrics, including mean squared error (MSE), root mean squared error (rMSE), relative squared error (RSE), relative absolute error (RAE), and the correlation coefficient (R). The results demonstrate the high accuracy of our proposed technique, evidenced by the minimal error between predicted and experimentally measured PCE values: 0.0325 for RSE, 0.0729 for RAE, 0.2223 for rMSE, and 0.0541 for MSE using the LSTM model. These findings highlight the potential of proposed models in accurately predicting the performance of OPVs, thus contributing to the advancement of sustainable energy technologies.
- Klíčová slova
- Degradation, Inverted organic solar cells, Long short-term memory, Machine learning, Multi-layer perceptron, Power conversion efficiency, Prediction,
- Publikační typ
- časopisecké články MeSH
Bearing degradation is the primary cause of electrical machine failures, making reliable condition monitoring essential to prevent breakdowns. This paper presents a novel hybrid model for the detection of multiple faults in bearings, combining Long Short-Term Memory (LSTM) networks with random forest (RF) classifiers, further enhanced by the Grey Wolf Optimization (GWO) algorithm. The proposed approach is structured in three stages: first, time and frequency domain features are manually extracted from vibration signals; second, these features are processed by a dual-layer LSTM network, which is specifically designed to capture complex temporal relationships within the data; finally, the GWO algorithm is employed to optimize feature selection from the LSTM outputs, feeding the most relevant features into the RF classifier for fault classification. The model was rigorously evaluated using a dataset comprising six distinct bearing health conditions: healthy, outer race fault, ball fault, inner race fault, compounded fault, and generalized degradation. The hybrid LSTM-RF-GWO model achieved a remarkable classification accuracy of 98.97%, significantly outperforming standalone models such as LSTM (93.56%) and RF (98.44%). Furthermore, the inclusion of GWO led to an additional accuracy improvement of 0.39% compared to the hybrid LSTM-RF model without optimization. Other performance metrics, including precision, kappa coefficient, false negative rate (FNR), and false positive rate (FPR), were also improved, with precision reaching 99.28% and the kappa coefficient achieving 99.13%. The FNR and FPR were reduced to 0.0071 and 0.0015, respectively, underscoring the model's effectiveness in minimizing misclassifications. The experimental results demonstrate that the proposed hybrid LSTM-RF-GWO framework not only enhances fault detection accuracy but also provides a robust solution for distinguishing between closely related fault conditions, making it a valuable tool for predictive maintenance in industrial applications.
- Klíčová slova
- Bearing fault detection, Feature selection, Grey wolf optimization, Hybrid model, LSTM, Machine learning, Random forest, Vibration signals,
- Publikační typ
- časopisecké články MeSH