Grey wolf optimization Dotaz Zobrazit nápovědu
Process planning optimization is a well-known NP-hard combinatorial problem extensively studied in the scientific community. Its main components include operation sequencing, selection of manufacturing resources and determination of appropriate setup plans. These problems require metaheuristic-based approaches in order to be effectively and efficiently solved. Therefore, to optimize the complex process planning problem, a novel hybrid grey wolf optimizer (HGWO) is proposed. The traditional grey wolf optimizer (GWO) is improved by employing genetic strategies such as selection, crossover and mutation which enhance global search abilities and convergence of the traditional GWO. Precedence relationships among machining operations are taken into account and precedence constraints are modeled using operation precedence graphs and adjacency matrices. Constraint handling heuristic procedure is adopted to move infeasible solutions to a feasible domain. Minimization of the total weighted machining cost of a process plan is adopted as the objective and three experimental studies that consider three different prismatic parts are conducted. Comparative analysis of the obtained cost values, as well as the convergence analysis, are performed and the HGWO approach demonstrated effectiveness and flexibility in finding optimal and near-optimal process plans. On the other side, comparative analysis of computational times and execution times of certain MATLAB functions showed that the HGWO have good time efficiency but limited since it requires more time compared to considered hybrid and traditional algorithms. Potential directions to improving efficiency and performances of the proposed approach are given in conclusions.
- Klíčová slova
- constraint handling, crossover, grey wolf optimizer, mutation, precedence constraints, process planning optimization, selection,
- Publikační typ
- časopisecké články MeSH
Bearing degradation is the primary cause of electrical machine failures, making reliable condition monitoring essential to prevent breakdowns. This paper presents a novel hybrid model for the detection of multiple faults in bearings, combining Long Short-Term Memory (LSTM) networks with random forest (RF) classifiers, further enhanced by the Grey Wolf Optimization (GWO) algorithm. The proposed approach is structured in three stages: first, time and frequency domain features are manually extracted from vibration signals; second, these features are processed by a dual-layer LSTM network, which is specifically designed to capture complex temporal relationships within the data; finally, the GWO algorithm is employed to optimize feature selection from the LSTM outputs, feeding the most relevant features into the RF classifier for fault classification. The model was rigorously evaluated using a dataset comprising six distinct bearing health conditions: healthy, outer race fault, ball fault, inner race fault, compounded fault, and generalized degradation. The hybrid LSTM-RF-GWO model achieved a remarkable classification accuracy of 98.97%, significantly outperforming standalone models such as LSTM (93.56%) and RF (98.44%). Furthermore, the inclusion of GWO led to an additional accuracy improvement of 0.39% compared to the hybrid LSTM-RF model without optimization. Other performance metrics, including precision, kappa coefficient, false negative rate (FNR), and false positive rate (FPR), were also improved, with precision reaching 99.28% and the kappa coefficient achieving 99.13%. The FNR and FPR were reduced to 0.0071 and 0.0015, respectively, underscoring the model's effectiveness in minimizing misclassifications. The experimental results demonstrate that the proposed hybrid LSTM-RF-GWO framework not only enhances fault detection accuracy but also provides a robust solution for distinguishing between closely related fault conditions, making it a valuable tool for predictive maintenance in industrial applications.
- Klíčová slova
- Bearing fault detection, Feature selection, Grey wolf optimization, Hybrid model, LSTM, Machine learning, Random forest, Vibration signals,
- Publikační typ
- časopisecké články MeSH
Numerous optimization problems designed in different branches of science and the real world must be solved using appropriate techniques. Population-based optimization algorithms are some of the most important and practical techniques for solving optimization problems. In this paper, a new optimization algorithm called the Cat and Mouse-Based Optimizer (CMBO) is presented that mimics the natural behavior between cats and mice. In the proposed CMBO, the movement of cats towards mice as well as the escape of mice towards havens is simulated. Mathematical modeling and formulation of the proposed CMBO for implementation on optimization problems are presented. The performance of the CMBO is evaluated on a standard set of objective functions of three different types including unimodal, high-dimensional multimodal, and fixed-dimensional multimodal. The results of optimization of objective functions show that the proposed CMBO has a good ability to solve various optimization problems. Moreover, the optimization results obtained from the CMBO are compared with the performance of nine other well-known algorithms including Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Gravitational Search Algorithm (GSA), Teaching-Learning-Based Optimization (TLBO), Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), Marine Predators Algorithm (MPA), Tunicate Swarm Algorithm (TSA), and Teamwork Optimization Algorithm (TOA). The performance analysis of the proposed CMBO against the compared algorithms shows that CMBO is much more competitive than other algorithms by providing more suitable quasi-optimal solutions that are closer to the global optimal.
- Klíčová slova
- cat and mouse, optimization, optimization problem, population-based, stochastic,
- MeSH
- algoritmy * MeSH
- pohyb MeSH
- řešení problému MeSH
- teoretické modely * MeSH
- učení MeSH
- Publikační typ
- časopisecké články MeSH
This paper explores scenarios for powering rural areas in Gaita Selassie with renewable energy plants, aiming to reduce system costs by optimizing component numbers to meet energy demands. Various scenarios, such as combining solar photovoltaic (PV) with pumped hydro-energy storage (PHES), utilizing wind energy with PHES, and integrating a hybrid system of PV, wind, and PHES, have been evaluated based on diverse criteria, encompassing financial aspects and reliability. To achieve the results, meta-heuristics such as the Multiobjective Gray wolf optimization algorithm (MOGWO) and Multiobjective Grasshopper optimization algorithm (MOGOA) were applied using MATLAB software. Moreover, optimal component sizing has been investigated utilizing real-time assessment data and meteorological data from Gaita Sillasie, Ethiopia. Metaheuristic optimization techniques were employed to pinpoint the most favorable loss of power supply probability (LPSP) with the least cost of energy (COE) and total life cycle cost (TLCC) for the hybrid system, all while meeting operational requirements in various scenarios. The Multi-Objective Grey Wolf Optimization (MOGWO) technique outperformed the Multi-Objective Grasshopper Optimization Algorithm (MOGOA) in optimizing the problem, as suggested by the results. Furthermore, based on MOGWO findings, the hybrid solar PV-Wind-PHES system demonstrated the lowest COE (0.126€/kWh) and TLCC (€6,897,300), along with optimal satisfaction of the village's energy demand and LPSP value. In the PV-Wind-PHSS scenario, the TLCC and COE are 38%, 18%, 2%, and 1.5% lower than those for the Wind-PHS and PV-PHSS scenarios at LPSP 0%, according to MOGWO results. Overall, this research contributes valuable insights into the design and implementation of sustainable energy solutions for remote communities, paving the way for enhanced energy access and environmental sustainability.
- Klíčová slova
- Cost-effective energy solutions, Hybrid energy systems, Optimization algorithms, Renewable energy systems, Rural electrification,
- Publikační typ
- časopisecké články MeSH
This study introduces a novel approach for analyzing photovoltaic (PV) systems that employ block lookup tables for speedy and efficient simulation. It introduces an innovative method for tracking the Global Maximum Power Point (GMPP) by utilizing Zebra Optimization Algorithm (ZOA). The suggested method was carefully evaluated under difficult Partial Shading Conditions (PSCs) and Dynamic Shading Conditions (DSCs) to determine its global and local search capability. ZOA's performance was examined in four scenarios and compared to four existing MPPT algorithms: Grey Wolf Optimization (GWO), Particle Swarm Optimization (PSO), Flower Pollination Algorithm (FPA), and Whale Optimization Algorithm (WOA). ZOA surpassed its competitors with an average tracking time of 0.875 s and a tracking efficiency of 99.95% in PSCs. In comparison, ZOA increased tracking efficiency by up to 2%, increased resilience under varied circumstances, and produced a faster convergence speed-approaching the maximum Power Point 10-15% faster than the other algorithms. Furthermore, ZOA significantly decreased operating point variations. The algorithm's overall performance was tested using an experimental setup with a DSPACE board and a PV emulator. These findings demonstrate that ZOA is a highly efficient and dependable MPPT solution for PV systems, especially in severe PSCs.
In recent times, there has been notable progress in control systems across various industrial domains, necessitating effective management of dynamic systems for optimal functionality. A crucial research focus has emerged in optimizing control parameters to augment controller performance. Among the plethora of optimization algorithms, the mountain gazelle optimizer (MGO) stands out for its capacity to emulate the agile movements and behavioral strategies observed in mountain gazelles. This paper introduces a novel approach employing MGO to optimize control parameters in both a DC motor and three-tank liquid level systems. The fine-tuning of proportional-integral-derivative (PID) controller parameters using MGO achieves remarkable results, including a rise time of 0.0478 s, zero overshoot, and a settling time of 0.0841 s for the DC motor system. Similarly, the liquid level system demonstrates improved control with a rise time of 11.0424 s and a settling time of 60.6037 s. Comparative assessments with competitive algorithms, such as the grey wolf optimizer and particle swarm optimization, reveal MGO's superior performance. Furthermore, a new performance indicator, ZLG, is introduced to comprehensively evaluate control quality. The MGO-based approach consistently achieves lower ZLG values, showcasing its adaptability and robustness in dynamic system control and parameter optimization. By providing a dependable and efficient optimization methodology, this research contributes to advancing control systems, promoting stability, and enhancing efficiency across diverse industrial applications.
- Klíčová slova
- DC motor speed regulation, Liquid level control, Mountain Gazelle optimizer, PID controller, Parameter estimation,
- Publikační typ
- časopisecké články MeSH
Feature selection is a critical component of machine learning and data mining which addresses challenges like irrelevance, noise, redundancy in large-scale data etc., which often result in the curse of dimensionality. This study employs a K-nearest neighbour wrapper to implement feature selection using six nature-inspired algorithms, derived from human behaviour and mammal-inspired techniques. Evaluated on six real-world datasets, the study aims to compare the performance of these algorithms in terms of accuracy, feature count, fitness, convergence and computational cost. The findings underscore the efficacy of the Human Learning Optimization, Poor and Rich Optimization and Grey Wolf Optimizer algorithms across multiple performance metrics. For instance, for mean fitness, Human Learning Optimization outperforms the others, followed by Poor and Rich Optimization and Harmony Search. The study suggests the potential of human-inspired algorithms, particularly Poor and Rich Optimization, in robust feature selection without compromising classification accuracy.
- Klíčová slova
- Algorithms, Feature reduction, KNN, Metaheuristics, Non-traditional algorithms, Optimization,
- Publikační typ
- časopisecké články MeSH
This research introduces the Multi-Objective Liver Cancer Algorithm (MOLCA), a novel approach inspired by the growth and proliferation patterns of liver tumors. MOLCA emulates the evolutionary tendencies of liver tumors, leveraging their expansion dynamics as a model for solving multi-objective optimization problems in engineering design. The algorithm uniquely combines genetic operators with the Random Opposition-Based Learning (ROBL) strategy, optimizing both local and global search capabilities. Further enhancement is achieved through the integration of elitist non-dominated sorting (NDS), information feedback mechanism (IFM) and Crowding Distance (CD) selection method, which collectively aim to efficiently identify the Pareto optimal front. The performance of MOLCA is rigorously assessed using a comprehensive set of standard multi-objective test benchmarks, including ZDT, DTLZ and various Constraint (CONSTR, TNK, SRN, BNH, OSY and KITA) and real-world engineering design problems like Brushless DC wheel motor, Safety isolating transformer, Helical spring, Two-bar truss and Welded beam. Its efficacy is benchmarked against prominent algorithms such as the non-dominated sorting grey wolf optimizer (NSGWO), multiobjective multi-verse optimization (MOMVO), non-dominated sorting genetic algorithm (NSGA-II), decomposition-based multiobjective evolutionary algorithm (MOEA/D) and multiobjective marine predator algorithm (MOMPA). Quantitative analysis is conducted using GD, IGD, SP, SD, HV and RT metrics to represent convergence and distribution, while qualitative aspects are presented through graphical representations of the Pareto fronts. The MOLCA source code is available at: https://github.com/kanak02/MOLCA.
- Klíčová slova
- Engineering design optimization, Liver cancer algorithm, MOLCA, Multi objective optimization, Non-dominated solution, Pareto front, Pareto solution,
- Publikační typ
- časopisecké články MeSH
This study presents the Enhanced Cheetah Optimizer Algorithm (ECOA) designed to tackle the intricate real-world challenges of dynamic economic dispatch (DED). These complexities encompass demand-side management (DSM), integration of non-conventional energy sources, and the utilization of pumped-storage hydroelectric units. Acknowledging the variability of solar and wind energy sources and the existence of a pumped-storage hydroelectric system, this study integrates a solar-wind-thermal energy system. The DSM program not only enhances power grid security but also lowers operational costs. The research addresses the DED problem with and without DSM implementation to analyze its impact. Demonstrating effectiveness on two test systems, the suggested method's efficacy is showcased. The recommended method's simulation results have been compared to those obtained using Cheetah Optimizer Algorithm (COA) and Grey Wolf Optimizer. The optimization results indicate that, for both the 10-unit and 20-unit systems, the proposed ECOA algorithm achieves savings of 0.24% and 0.43%, respectively, in operation costs when Dynamic Economic Dispatch is conducted with Demand-Side Management (DSM). This underscores the advantageous capability of DSM in minimizing costs and enhancing the economic efficiency of the power systems. Our ECOA has greater adaptability and reliability, making it a promising solution for addressing multi-objective energy management difficulties within microgrids, particularly when demand response mechanisms are incorporated. Furthermore, the suggested ECOA has the ability to elucidate the multi-objective dynamic optimal power flow problem in IEEE standard test systems, particularly when electric vehicles and renewable energy sources are integrated.
- Publikační typ
- časopisecké články MeSH
The use of plug-in hybrid electric vehicles (PHEVs) provides a way to address energy and environmental issues. Integrating a large number of PHEVs with advanced control and storage capabilities can enhance the flexibility of the distribution grid. This study proposes an innovative energy management strategy (EMS) using an Iterative map-based self-adaptive crystal structure algorithm (SaCryStAl) specifically designed for microgrids with renewable energy sources (RESs) and PHEVs. The goal is to optimize multi-objective scheduling for a microgrid with wind turbines, micro-turbines, fuel cells, solar photovoltaic systems, and batteries to balance power and store excess energy. The aim is to minimize microgrid operating costs while considering environmental impacts. The optimization problem is framed as a multi-objective problem with nonlinear constraints, using fuzzy logic to aid decision-making. In the first scenario, the microgrid is optimized with all RESs installed within predetermined boundaries, in addition to grid connection. In the second scenario, the microgrid operates with a wind turbine at rated power. The third case study involves integrating plug-in hybrid electric vehicles (PHEVs) into the microgrid in three charging modes: coordinated, smart, and uncoordinated, utilizing standard and rated RES power. The SaCryStAl algorithm showed superior performance in operation cost, emissions, and execution time compared to traditional CryStAl and other recent optimization methods. The proposed SaCryStAl algorithm achieved optimal solutions in the first scenario for cost and emissions at 177.29 €ct and 469.92 kg, respectively, within a reasonable time frame. In the second scenario, it yielded optimal cost and emissions values of 112.02 €ct and 196.15 kg, respectively. Lastly, in the third scenario, the SaCryStAl algorithm achieves optimal cost values of 319.9301 €ct, 160.9827 €ct and 128.2815 €ct for uncoordinated charging, coordinated charging and smart charging modes respectively. Optimization results reveal that the proposed SaCryStAl outperformed other evolutionary optimization algorithms, such as differential evolution, CryStAl, Grey Wolf Optimizer, particle swarm optimization, and genetic algorithm, as confirmed through test cases.