Nejvíce citovaný článek - PubMed ID 39339024
Effect of Cutting Conditions on the Size of Dust Particles Generated during Milling of Carbon Fibre-Reinforced Composite Materials
This study investigates the effectiveness of trochoidal (adaptive) milling in machining Glass Fiber Reinforced Polymer (GFRP), emphasizing its potential advantages over conventional milling. Six coated solid carbide end mills, each with distinct geometries, were evaluated under identical conditions to assess the cutting forces, surface quality, dimensional accuracy, burr formation, chip size distribution, and tool wear. Trochoidal milling demonstrated shorter cycle times-up to 23% faster-and higher material removal rates (MRRs), while conventional milling provided superior dimensional control and smoother surfaces in certain fiber-sensitive regions. A four-tooth cutter with a low helix angle (10°) and aluminum-oxide coating delivered the best overall performance, balancing minimal tool wear with high-quality finishes (arithmetic mean roughness, Ra, as low as 1.36 μm). The results indicate that although conventional milling can exhibit a 25%-lower RMS cutting force, its peak forces and extended machining times may limit the throughput. Conversely, trochoidal milling, when coupled with an appropriately robust tool, effectively manages the cutting forces, improves the surface quality, and reduces the machining time. Most chips produced were less than 11 μm in size, highlighting the need for suitable dust extraction. Notably, a hybrid approach-trochoidal roughing followed by conventional finishing-offers a promising method for achieving both efficient material removal and enhanced dimensional accuracy in GFRP components.
- Klíčová slova
- GFRP, adaptive milling, anisotropic materials, burr formation, composite machining, cutting forces, hybrid strategy, surface roughness, tool wear, trochoidal milling,
- Publikační typ
- časopisecké články MeSH
The paper presents an analysis of the filler's effect on the machining process and on changes in the thermomechanical properties of polymer composites based on aluminum chips. Composite research samples with a polymer matrix in the form of polyamide 6 were made by the pressing method. Comparative studies were carried out on the changes in thermomechanical properties and structure of the obtained molders with different filler contents and different fractions after the machining process. In order to determine the changes in thermal and mechanical properties, analysis was carried out using the differential scanning calorimetry (DSC) method, thermal analysis of dynamic mechanical properties (DMTA) and a detailed stereometric analysis of the surface. After mechanical processing, roughness amplitude parameters and volumetric functional parameters were determined. In order to analyze the structure, tomographic examinations of the manufactured composite were conducted. In relation to the polymer matrix, a significant increase in the storage modulus of the composites was noted in the entire temperature range of the study. An increase in the enthalpy of melting of the matrix was noted in composites with a lower filler content and a shift in the melting range of the crystalline phase. Significant differences were noted in the study of the composite surfaces in the case of using fillers obtained after machining with different fractions. The dependencies of the functional and amplitude parameters of the surfaces after machining of composite samples prove the change in the functional properties of the surface. The use of aluminum chips in the composite significantly changed the surface geometry.
- Klíčová slova
- DSC and DMTA testing, aluminum filler, machining, polymer composites, roughness, surface integrity parameters,
- Publikační typ
- časopisecké články MeSH