Most cited article - PubMed ID 7929332
Transport of anions and protons by the mitochondrial uncoupling protein and its regulation by nucleotides and fatty acids. A new look at old hypotheses
BACKGROUND: Mitochondrial energy can be stored as ATP or released as heat by uncoupling protein 1 (UCP1) during non-shivering thermogenesis in brown adipose tissue. UCP1, located in the inner mitochondrial membrane, reduces the proton gradient in the presence of long-chain fatty acids (FA). FA act as weak, protein-independent uncouplers, with the transport of the FA anion across the membrane being the rate-limiting step. According to the fatty acid cycling hypothesis, UCP1 catalyzes this step through an as-yet-undefined mechanism. METHODS: We used computational and experimental techniques, including all-atom molecular dynamics (MD) simulations, membrane conductance measurements, and site-directed mutagenesis. RESULTS: We identified two novel pathways for fatty acid anion translocation (sliding) at the UCP1 protein-lipid interface, ending at key arginine residues R84 and R183 in a nucleotide-binding region. This region forms a stable complex with fatty acid anion, which is crucial for anion transport. Mutations of these two arginines reduced membrane conductance, consistent with the MD simulation prediction that the arachidonic acid anion slides between helices H2-H3 and H4-H5, terminating at R84 and R183. Protonation of the arachidonic acid anion predicts its release from the protein-lipid interface, allowing it to move to either cytosolic or matrix leaflets of the membrane. CONCLUSION: We provide a novel, detailed mechanism by which UCP1 facilitates fatty acid anion transport, as part of the fatty acid cycling process originally proposed by Skulachev. The residues involved in this transport are conserved in other SLC25 proteins, suggesting the mechanism may extend beyond UCP1 to other members of the superfamily.
- Keywords
- anion transporter, cardiolipin, fatty acid cycling, mitochondrial SLC25 family, molecular dynamics simulations, proton transport mechanism,
- MeSH
- Ion Channels * metabolism chemistry genetics MeSH
- Ion Transport physiology MeSH
- Humans MeSH
- Fatty Acids * metabolism MeSH
- Mitochondrial Proteins * metabolism chemistry genetics MeSH
- Mutagenesis, Site-Directed MeSH
- Molecular Dynamics Simulation * MeSH
- Uncoupling Protein 1 MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Ion Channels * MeSH
- Fatty Acids * MeSH
- Mitochondrial Proteins * MeSH
- Uncoupling Protein 1 MeSH
SIGNIFICANCE: Mitochondria are the energetic, metabolic, redox, and information signaling centers of the cell. Substrate pressure, mitochondrial network dynamics, and cristae morphology state are integrated by the protonmotive force Δp or its potential component, ΔΨ, which are attenuated by proton backflux into the matrix, termed uncoupling. The mitochondrial uncoupling proteins (UCP1-5) play an eminent role in the regulation of each of the mentioned aspects, being involved in numerous physiological events including redox signaling. Recent Advances: UCP2 structure, including purine nucleotide and fatty acid (FA) binding sites, strongly support the FA cycling mechanism: UCP2 expels FA anions, whereas uncoupling is achieved by the membrane backflux of protonated FA. Nascent FAs, cleaved by phospholipases, are preferential. The resulting Δp dissipation decreases superoxide formation dependent on Δp. UCP-mediated antioxidant protection and its impairment are expected to play a major role in cell physiology and pathology. Moreover, UCP2-mediated aspartate, oxaloacetate, and malate antiport with phosphate is expected to alter metabolism of cancer cells. CRITICAL ISSUES: A wide range of UCP antioxidant effects and participations in redox signaling have been reported; however, mechanisms of UCP activation are still debated. Switching off/on the UCP2 protonophoretic function might serve as redox signaling either by employing/releasing the extra capacity of cell antioxidant systems or by directly increasing/decreasing mitochondrial superoxide sources. Rapid UCP2 degradation, FA levels, elevation of purine nucleotides, decreased Mg2+, or increased pyruvate accumulation may initiate UCP-mediated redox signaling. FUTURE DIRECTIONS: Issues such as UCP2 participation in glucose sensing, neuronal (synaptic) function, and immune cell activation should be elucidated. Antioxid. Redox Signal. 29, 667-714.
- Keywords
- UCP2, anion transport, attenuation of superoxide formation, fatty acid cycling, mitochondrial uncoupling proteins, redox signaling,
- MeSH
- Antioxidants metabolism MeSH
- Humans MeSH
- Mitochondrial Uncoupling Proteins metabolism MeSH
- Oxidation-Reduction MeSH
- Signal Transduction * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Antioxidants MeSH
- Mitochondrial Uncoupling Proteins MeSH
Mitochondrial uncoupling proteins (UCPs) are pure anion uniporters, which mediate fatty acid (FA) uniport leading to FA cycling. Protonated FAs then flip-flop back across the lipid bilayer. An existence of pure proton channel in UCPs is excluded by the equivalent flux-voltage dependencies for uniport of FAs and halide anions, which are best described by the Eyring barrier variant with a single energy well in the middle of two peaks. Experiments with FAs unable to flip and alkylsulfonates also support this view. Phylogenetically, UCPs took advantage of the common FA-uncoupling function of SLC25 family carriers and dropped their solute transport function.
- MeSH
- Models, Biological MeSH
- Electrophoresis MeSH
- Ion Channels metabolism MeSH
- Humans MeSH
- Mitochondrial Proteins metabolism MeSH
- Protons MeSH
- Uncoupling Protein 1 MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Ion Channels MeSH
- Mitochondrial Proteins MeSH
- Protons MeSH
- Uncoupling Protein 1 MeSH