Invasive parasites that expand their natural range can be a threat to wildlife biodiversity and may pose a health risk to non-adapted, naive host species. The invasive giant liver fluke, Fascioloides magna, native to North America, has extended its range in Europe and uses mainly red deer (Cervus elaphus) as definitive hosts. The penetration of the intestinal barrier by the young flukes to reach the liver via the abdominal cavity as well as the release of fluke metabolism products and excreta with the bile and/or changes in the microbial community of the biliary system may enable the translocation of intestinal bacteria across the intestinal barrier and, in turn, could be associated with inflammation and changes in the intestinal bacterial community. The gut commensal community plays a key role in host nutrition and interacts with cells of the immune system to maintain host health. For this study, the gut bacterial community of red deer infected with F. magna and of non-infected red deer from one of the largest forest ecosystems in Central Europe, located on the border between the Czech Republic and Germany, was investigated. The individual fluke burden was associated with changes in the gut microbial composition of the gut of infected individuals, whereas the diversity and composition of the gut bacteria were only slightly different between fluke-infected and uninfected deer. Several bacterial taxa at the genus level were unique to individuals carrying either one or many liver flukes. Our results suggest that the microbiota of red deer is stable to perturbation by low numbers of F. magna. However, a larger parasite burden may cause changes in the gut microbial composition in definitive hosts implying that non-invasive fecal microbiome assessments could serve as indicator for wildlife health monitoring.
- Klíčová slova
- Bohemian forest ecosystem, Gut microbiota, Invasive parasite, Liver fluke Fascioloides magna, Wildlife health monitoring,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Platyhelminthes are common parasites of diurnal birds of prey, including common buzzard (Buteo buteo). They are widely distributed in Europe. Despite the extensive study of flatworms across the continent, this study represents the first report for Romania and extends the biogeographic knowledge of Platyhelminthes in diurnal raptors. It also identifies common buzzards as a new host of Parastrigea flexilis in Europe. MATERIALS AND METHODS: Between 2017 and 2020, 63 common buzzards (Buteo buteo) found road killed or dead due to other causes were collected from Romania. All specimens were necropsied and examined for internal helminths, which were preserved in ethanol for molecular identification and formaldehyde for morphological identification. RESULTS: Species identified included Cestoda: Cladotaenia globifera (33.3%) and five species of Trematoda: Neodiplostomum attenuatum (12.7%), Strigea falconis (6.4%), Parastrigea flexilis (3.2%), Neodiplostomum spathoides (3.2%) and Brachylaima fuscata (1.6%). CONCLUSIONS: This study provides new data about diversity, phylogenetics and geographical distribution of Platyhelminthes parasitizing Buteo buteo in Romania. To our best knowledge, it identifies B. buteo as a new host of Parastrigea flexilis and reports the first genetic sequence of Neodiplostomum spathoides.
- Klíčová slova
- Cestodes, Common buzzard, Romania, Trematodes,
- Publikační typ
- časopisecké články MeSH
Tapeworms of the genus Spirometra Faust, Campbell et Kellogg, 1929 have long been known as intestinal parasites of carnivores and their larvae (spargana) have been found in various vertebrates. Nevertheless, their species diversity, host associations and geographical distribution remain poorly understood. Molecular data clearly confirm the validity of the genus, which has been synonymised by several authors with Diphyllobothrium Cobbold, 1858. Despite morphological similarities between the species of the two genera, they are not closely related and also differ in their life cycle. The present review provides a list of the species recognised as valid and additional genotypes that may represent other species, with a basic characterisation of each taxon and comments on their validity, the probable range of definitive and intermediate hosts, and their distribution. The existing taxonomic problems and the insufficient knowledge of the host specificity and distribution of Spirometra tapeworms can only be solved by combining molecular and morphological data, i.e. by comparing genetically characterised specimens with corresponding morphological vouchers (hologenophores). Further targeted sampling and surveys are required to clarify the distribution and host associations.
- Klíčová slova
- Broad tapeworms, Diversity, Geographical distribution, Host range, Molecular phylogeny, Sparganosis, Zoonosis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Avian Dicrocoeliidae are difficult to identify, even in their adult stages. Molecular analyses have been conducted for only a few species, complicating the accurate identification of juvenile stages. The taxonomy of the family is unresolved, and the status of many dicrocoeliid species is uncertain. Sequences of nuclear and mitochondrial DNA loci of Central European avian Dicrocoeliidae were generated and analyzed. These included representatives of the genera Lyperosomum, Platynosomum, Stromitrema, Brachylecithum, Brachydistomum, and Lutztrema. All the sequences were obtained from morphologically identified adult specimens of dicrocoeliids isolated from avian hosts. Molecular support was obtained to validate Lyperosomum turdia, confirm the rejection of Lyperosomum dujardini and Lyperosomum alagesi, and resurrect Lyperosomum longicauda and Lyperosomum collurionis. The identity of European Platynosomum illiciens from avian hosts with American vouchers of the same species from avian and mammalian hosts was confirmed. Brachylecithum fringillae is not considered valid; the individuals that matched its diagnosis were subadult Brachydistomum ventricosum. Descriptions and comparative data for five new species are provided. These are Lyperosomum hirundinis sp. n., Lyperosomum tenori sp. n., Lyperosomum atricapillae sp. n., Stromitrema acrocephali sp. n., and Lutztrema atricapillae sp. n.. Based on the molecular data, suggestions are provided regarding the validity of dicrocoeliid species that parasitize Central European birds. Further research should address the polyphyletic status of Brachylecithum.
- Klíčová slova
- Bile duct, Bird, Cryptic species, Dicrocoeliidae, Gall bladder, Platyhelminthes,
- Publikační typ
- časopisecké články MeSH
Tapeworms of the genus Ophiotaenia La Rue, 1911 parasitize herptiles (= amphibians and 'reptiles') throughout the world, with about 100 species recognised as valid. In the present work, the North American species found in watersnakes (Colubridae) are reviewed. An examination of the holotype of Ophiotaenia perspicua La Rue, 1911, the type species of the genus, and other specimens from Nerodia rhombifer (Hallowell) revealed that two species were used for the species description. The 'true' O. perspicua has a small scolex and small, round suckers. This species is redescribed based on new material from Oklahoma, USA. The other species from N. rhombifer, Ophiotaenia laruei n. sp., has a larger scolex and larger, almost triangular suckers. Examination of the types of O. variabilis (Brooks, 1978) from N. rhombifer and N. cyclopion (Duméril, Bibron et Duméril) from Louisiana, USA has revealed that it is a mixture of two or more species. Because of poor quality of these specimens, it is not possible to adequately characterise O. variabilis, which is considered a species inquirenda. In addition, two new species are described from Nerodia fasciata confluens (Blanchard). Ophiotaenia currani n. sp. from Mississippi, USA is characterised by elongate, narrow proglottids, few testes, and a relatively long cirrus sac. Ophiotaenia tkachi n. sp. from Louisiana, USA is characterised by relatively short and wide proglottids, more testes, and an unusual terminal part of the vagina with folds. Morphologically similar tapeworms of N. fasciata confluens, N. erythrogaster (Förster), N. sipedon (Linnaeus), and Agkistrodon piscivorus (Lacépède) (Viperidae) from Arkansas and Oklahoma, USA, which are genetically nearly identical, are considered to be conspecific with O. tkachi n. sp. The present data suggest a high, previously undescribed species diversity of proteocephalid tapeworms in watersnakes in North America, and generally strict host specificity of these tapeworms.
- Klíčová slova
- Morphology, Natricinae, Nearctic region, New species, Onchoproteocephalidea, Ophiotaenia, Taxonomy, Watersnakes,
- Publikační typ
- časopisecké články MeSH
Cutaneous leishmaniasis (CL) is the most important neglected disease reported in North Africa, Algeria ranks second in the world with more than 5000 cases per year. In Algeria, two rodent species Psammomys obesus and Meriones shawi, are so far known as proven reservoirs of Leishmania major, however, they are absent in several endemic localities. In this study, we experimentally infected Gerbillus rodents trapped around human dwellings in Illizi, Algeria to assess their susceptibility to L. major. Seven gerbils, morphologically and molecularly identified as Gerbillus amoenus, were intradermally inoculated with 104 parasites derived from culture, monitored for six months and their infectiousness for sand flies was tested by xenodiagnosis. The study revealed that G. amoenus was susceptible to L. major and was able to maintain and transmit the parasites to sand flies tested six months after infection, suggesting the role of this gerbil as a potential reservoir for L. major.
- Klíčová slova
- Algeria, Gerbillus amoenus, Leishmania major, Leishmaniasis, Rodents, Xenodiagnostic, qPCR,
- Publikační typ
- časopisecké články MeSH
Parasites, especially brain-encysting trematodes, can have an impact on host behaviour, facilitating the transmission to next host and completion of the life cycle, but insufficient research has been done on whether specific brain regions are targeted. Using Cardiocephaloides longicollis as a laboratory model, the precise distribution of metacercariae in experimentally-infected, wild and farmed fish was mapped. The brain regions targeted by this parasite were explored, also from a histologic perspective, and potential pathogenic effects were evaluated. Experimental infections allowed to reproduce the natural infection intensity of C. longicollis, with four times higher infection intensity at the higher dose (150 vs 50 cercariae). The observed metacercarial distribution, similar among all fish groups, may reflect a trematode species-specific pattern: metacercariae occur with highest density in the optic lobe area (primarily infecting the periventricular gray zone of optic tectum) and the medulla oblongata, whereas other areas such as the olfactory lobes and cerebellar lobes may be occupied when the more frequently invaded parts of the brain were crowded. Mono- and multicysts (i.e. formed either with a single metacercaria, or with 2-25 metacercariae encapsulated together) may be formed depending on the aggregation and timing of metacercariae arrival, with minor host inflammatory response. Larvae of C. longicollis colonizing specific brain areas may have an effect on the functions associated with these areas, which are generally related to sensory and motor functions, but are also related to other host fitness traits such as school maintenance or recognition of predators. The detailed information on the extent and distribution of C. longicollis in fish encephalon sets the ground to understand the effects of brain parasites on fish, but further investigation to establish if C. longicollis, through purely mechanical damage (e.g., occupation, pressure and displacement), has an actual impact on host behaviour remains to be tested under controlled experimental conditions.
- Klíčová slova
- Brain-encysting, Cardiocephaloides longicollis, Histology, Microhabitat selection, Trematoda,
- Publikační typ
- časopisecké články MeSH
European wildcats (Felis silvestris silvestris) have not been investigated in large numbers for blood-associated pathogens in Germany, because wildcats, being a protected species, may not be hunted, and the collection of samples is therefore difficult. Thus, spleen tissue and whole blood from 96 wildcats from Germany found as roadkill or dead from other causes in the years 1998-2020 were examined for the prevalence of blood associated pathogens using molecular genetic tools. PCR was used to screen for haemotrophic Mycoplasma spp., Hepatozoon spp., Cytauxzoon spp., Bartonella spp., Filarioidea, Anaplasmataceae, and Rickettsiales, and positive samples were subsequently sequenced. Phylogenetic analyses were performed for Mycoplasma spp. and Hepatozoon spp. by calculating phylogenetic trees and DNA haplotype networks. The following pathogens were found: Candidatus Mycoplasma haematominutum (7/96), Mycoplasma ovis (1/96), Hepatozoon silvestris (34/96), Hepatozoon felis (6/96), Cytauxzoon europaeus (45/96), and Bartonella spp. (3/96). This study elucidates the prevalence of blood-associated pathogens in wildcats from Germany.
- Klíčová slova
- Bartonella, Cytauxzoon, Hepatozoon, Mycoplasma, Vector-borne disease,
- Publikační typ
- časopisecké články MeSH
A new genus, Laruella n. gen., is proposed for the proteocephalid cestode L. perplexa (La Rue, 1911) n. comb. (syn. Proteocephalus perplexus La Rue, 1911), a parasite of a 'living fossil', the bowfin (Amia calva), in North America. The new genus is differentiated from other proteocephalid genera by having a massive four-lobed scolex without an apical organ and bearing suckers possessing tear-shaped sphincters on their inner rim, vitelline follicles forming L-shaped lateral fields, with the vitellarium turned inwards (medially) ventrally alongside the posterior margin of the ovary, a ring-like vaginal sphincter situated at a considerable distance from the genital atrium, and ellipsoid eggs resembling those of bothriocephalid and diphyllobothriid tapeworms, except for the absence of an operculum. Phylogenetic relationships of the new genus are not resolved, but it belongs to the so-called Neotropical clade of the Proteocephalidae, which is composed mainly of Neotropical tapeworms of siluriforms and other teleosts, but also Nearctic and Palaearctic species of Ophiotaenia La Rue, 1911 from snakes and amphibians. A morphologically similar species, Proteocephalus ambloplitis (Leidy, 1887) from bass (Micropterus spp.) in North America, is provisionally retained in Proteocephalus Weinland, 1858 because its relationships to L. perplexa are not yet clear. The former species differs from L. perplexa by the presence of a large apical organ, large, elongate vaginal sphincter situated near the genital atrium, vitelline follicles limited to lateral longitudinal fields, strongly coiled vas deferens within the cirrus sac, and a convoluted vaginal canal anterior to the ovarian isthmus. Laruella perplexa reportedly has a s broad spectrum of hosts but most are likely postcyclic or accidental hosts. A list of cestode parasites reported from bowfin is provided; it includes eight species and three taxa not identified to the species level. However, only three adult cestodes, L. perplexa and two species of Haplobothrium Cooper, 1914, are typical tapeworm parasites of bowfin, but previous molecular studies indicate possible existence of a putative new species in bowfin.
- Klíčová slova
- Actinopterygii, Morphology, North America, Onchoproteocephalidea, Tapeworms, Taxonomy,
- Publikační typ
- časopisecké články MeSH
Giardia duodenalis is one of the most common intestinal parasites of humans, with a worldwide distribution. Giardia duodenalis has been reported in both wild and captive populations of non-human primates, namely chimpanzees. In this study we investigated an entire troop of clinically healthy chimpanzees (n = 21) for the presence of G. duodenalis and its association with faecal microbiota profile. Faecal samples (n = 26) were collected from the chimpanzee exhibit from a zoo in Sydney, Australia. Diagnosis of G. duodenalis was made using a Rapid Antigen Test (RAT) as a point-of-care-test and compared to a reference standard real-time PCR test. Approximately half of the chimpanzee faecal samples tested positive for G. duodenalis by both RAT (13/26, 50%) and real-time PCR (14/26, 53.85%). The RAT sensitivity was 85.7% (95% CI: 63.8%-96%) and specificity was 91.7% (95% CI: 68.3%-99%) when compared to the in-house real-time PCR. Genotyping of the samples revealed the presence of zoonotic assemblage B. Microscopic analysis revealed the presence of Troglodytella spp. (14/26), Balantioides sp. (syn. Balantidium sp.) (8/26) as well as Entamoeba spp. (3/26). Microbiota profile based on 16S rRNA gene sequencing revealed that the community was significantly different between G. duodenalis positive and negative samples if RAT results were taken into an account, but not real-time PCR diagnostics results. Proteobacteria and Chloroflexi were the significant features in the dataset that separated G. duodenalis positive and negative samples using LEfSe analysis. Being able to rapidly test for G. duodenalis in captive populations of primates assists in point-of-care diagnostics and may better identify animals with subclinical disease. Under the investigated conditions of the zoo setting, however, presence of G. duodenalis either detected by RAT or real-time PCR was not associated with clinically apparent disease in captive chimpanzees.
- Klíčová slova
- Commensal, Diagnostics, Giardiasis, Microbiome, Parasite, Zoo animals, Zoonosis,
- Publikační typ
- časopisecké články MeSH