The proteins and pigment of the eggshell of the Siamese crocodile (Crocodylus siamensis) were analysed. For proteomic analysis, various decalcification methods were used when the two main surface layers were analyzed. These layers are important for antimicrobial defense of egg (particularly the cuticle). We found 58 proteins in both layers, of which 4 were specific for the cuticle and 26 for the palisade (honeycomb) layer. Substantial differences between proteins in the eggshell of crocodile and previously described birds' eggshells exist (both in terms of quality and quantity), however, the entire proteome of Crocodilians has not been described yet. The most abundant protein was thyroglobulin. The role of determined proteins in the eggshell of the Siamese crocodile is discussed. For the first time, the presence of porphyrin pigment is reported in a crocodilian eggshell, albeit in a small amount (about 2 to 3 orders of magnitude lower than white avian eggs).
- Klíčová slova
- Crocodile, Eggshell pigment, Proteins of eggshell,
- MeSH
- aligátoři a krokodýli metabolismus MeSH
- proteiny plazů metabolismus MeSH
- proteom metabolismus MeSH
- vaječná skořápka metabolismus MeSH
- vaječné proteiny metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chorion proteins MeSH Prohlížeč
- proteiny plazů MeSH
- proteom MeSH
- vaječné proteiny MeSH
The allosteric influence of adenosine triphosphate (ATP) on the binding effectiveness of a series of peptide inhibitors with the catalytic subunit of 3'5'-cyclic adenosine monophosphate dependent protein kinase was investigated, and the dependence of this effect on peptide structure was analyzed. The allosteric effect was calculated as ratio of peptide binding effectiveness with the enzyme-ATP complex and with the free enzyme, quantified by the competitive inhibition of the enzyme in the presence of ATP excess, and by the enzyme-peptide complex denaturation assay, respectively It was found that the principle "better binding-stronger allostery" holds for interactions of the studied peptides with the enzyme, indicating that allostery and peptide binding with the free enzyme are governed by the same specificity pattern. This means that the allosteric regulation does not include new ligand-protein interactions, but changes the intensity (strength) of the interatomic forces that govern the complex formation in the case of each individual ligand. We propose that the allosteric regulation can be explained by the alteration of the intrinsic dynamics of the protein by ligand binding, and that this phenomenon, in turn, modulates the ligand off-rate from its binding site as well as the binding affinity. The positive allostery could therefore be induced by a reduction in the enzyme's overall intrinsic dynamics.
- Klíčová slova
- ATP binding, Allosteric regulation mechanism, Ligand structure effect, Peptide binding, cAMP-dependent protein kinase catalytic subunit,
- MeSH
- 2-naftylamin analogy a deriváty chemie MeSH
- adenosintrifosfát chemie metabolismus MeSH
- alosterická regulace MeSH
- alosterické místo MeSH
- AMP cyklický chemie metabolismus MeSH
- barvení a značení metody MeSH
- fluorescenční barviva chemie MeSH
- inhibitory proteinkinas chemie metabolismus MeSH
- katalytická doména MeSH
- kinetika MeSH
- lidé MeSH
- ligandy MeSH
- peptidy chemie metabolismus MeSH
- proteinkinasy závislé na cyklickém AMP chemie metabolismus MeSH
- sekvence aminokyselin MeSH
- termodynamika MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 2-naftylamin MeSH
- acrylodan MeSH Prohlížeč
- adenosintrifosfát MeSH
- AMP cyklický MeSH
- fluorescenční barviva MeSH
- inhibitory proteinkinas MeSH
- ligandy MeSH
- peptidy MeSH
- proteinkinasy závislé na cyklickém AMP MeSH
Bacteriophage ϕ6 is a double-stranded RNA virus that has been extensively studied as a model organism. Here we describe structure determination of ϕ6 major capsid protein P1. The protein crystallized in base centered orthorhombic space group C2221. Matthews's coefficient indicated that the crystals contain from four to seven P1 subunits in the crystallographic asymmetric unit. The self-rotation function had shown presence of fivefold axes of non-crystallographic symmetry in the crystals. Thus, electron density map corresponding to a P1 pentamer was excised from a previously determined cryoEM reconstruction of the ϕ6 procapsid at 7 Å resolution and used as a model for molecular replacement. The phases for reflections at higher than 7 Å resolution were obtained by phase extension employing the fivefold non-crystallographic symmetry present in the crystal. The averaged 3.6 Å-resolution electron density map was of sufficient quality to allow model building.
- MeSH
- bakteriofág phi 6 chemie MeSH
- elektronová kryomikroskopie MeSH
- konformace proteinů MeSH
- krystalizace MeSH
- krystalografie rentgenová MeSH
- molekulární modely MeSH
- virové plášťové proteiny chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- virové plášťové proteiny MeSH
While a plant cell wall is formed by a complex of various components, including polysaccharides and structural proteins, its composition and representation may vary during cell growth. Currently, plant research targets the proteins participating in wall loosening. Multiple classes of enzymes, including various hemicellulases and cellulases, are required for plant material degradation to achieve the maximum decomposition. Identifying the set of proteins involved in the breakdown of cell-wall polymers is important to understand plant material conversion into suitable products. The objective of this study was to describe a method which can be used to carry out proteomics analysis of complex plant samples and identify enzymes degrading biomass. For this purpose we used proteomic techniques including gel electrophoresis, high pressure liquid chromatography combinated with mass spectrometry followed by data evaluation using databases searching. Results show that more than 50 % of these activities correspond to enzymes with proteolytic function. This study was focused primarily on enzymes able to breakdown the lignocellulosic and hemicellulosic parts that are very important for the material conversion into required products of degradation.
- MeSH
- biomasa MeSH
- proteomika metody MeSH
- rostlinné proteiny chemie metabolismus MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- zemědělské plodiny chemie enzymologie růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rostlinné proteiny MeSH
Presence of mutated and/or structurally modified (e.g., denatured, aggregated) protein p53 form is associated with several disorders such as Alzheimer's disease, Parkinson's disease, prion diseases, and many types of tumours. The aim of this work was to distinguish native, denatured and aggregated form of full-length p53 by flow injection analysis coupled with electrochemical detector (FIA-ED). Firstly FIA-ED method used for protein native form determination was optimized (detection limit 45.8 amol per 5 mul injection; 3 x S/N). In addition the technique was applied to identify p53 structural forms (denatured and aggregated). It was found out that denatured form provides about three times higher electrochemical response (protein structure unfolding, approach of more electroactive centers - aminoacid residues - towards electrode surface) in comparison with native form. On the other hand, aggregated form offers lower response (steric eclipse of electroactive protein parts) when compared with the signal of native form. The obtained data show that we are not only able to sensitively determine native, denatured, and aggregated structural forms of p53 protein but also to distinguish them.
- MeSH
- denaturace proteinů MeSH
- elektrochemie MeSH
- konformace proteinů MeSH
- lidé MeSH
- nádorový supresorový protein p53 chemie MeSH
- průtoková injekční analýza metody MeSH
- senzitivita a specificita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nádorový supresorový protein p53 MeSH