Condensed Graph of Reaction
Dotaz
Zobrazit nápovědu
Here, we report the data visualization, analysis and modeling for a large set of 4830 SN 2 reactions the rate constant of which (logk) was measured at different experimental conditions (solvent, temperature). The reactions were encoded by one single molecular graph - Condensed Graph of Reactions, which allowed us to use conventional chemoinformatics techniques developed for individual molecules. Thus, Matched Reaction Pairs approach was suggested and used for the analyses of substituents effects on the substrates and nucleophiles reactivity. The data were visualized with the help of the Generative Topographic Mapping approach. Consensus Support Vector Regression (SVR) model for the rate constant was prepared. Unbiased estimation of the model's performance was made in cross-validation on reactions measured on unique structural transformations. The model's performance in cross-validation (RMSE=0.61 logk units) and on the external test set (RMSE=0.80) is close to the noise in data. Performances of the local models obtained for selected subsets of reactions proceeding in particular solvents or with particular type of nucleophiles were similar to that of the model built on the entire set. Finally, four different definitions of model's applicability domains for reactions were examined.
- Klíčová slova
- Condensed Graph of Reaction, Generative Topographic Mapping, Matched Reaction Pairs, Support Vector Regression, bimolecular nucleophilic substitution reactions, models applicability domain,
- MeSH
- chemické modely * MeSH
- cyklické uhlovodíky chemie MeSH
- kinetika MeSH
- oxidace-redukce MeSH
- support vector machine * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cyklické uhlovodíky MeSH
We describe a novel approach of reaction representation as a combination of two mixtures: a mixture of reactants and a mixture of products. In turn, each mixture can be encoded using an earlier reported approach involving simplex descriptors (SiRMS). The feature vector representing these two mixtures results from either concatenated product and reactant descriptors or the difference between descriptors of products and reactants. This reaction representation doesn't need an explicit labeling of a reaction center. The rigorous "product-out" cross-validation (CV) strategy has been suggested. Unlike the naïve "reaction-out" CV approach based on a random selection of items, the proposed one provides with more realistic estimation of prediction accuracy for reactions resulting in novel products. The new methodology has been applied to model rate constants of E2 reactions. It has been demonstrated that the use of the fragment control domain applicability approach significantly increases prediction accuracy of the models. The models obtained with new "mixture" approach performed better than those required either explicit (Condensed Graph of Reaction) or implicit (reaction fingerprints) reaction center labeling.
- Klíčová slova
- Chemical reactions, Condensed graph of reaction, Mixtures, Rate constant prediction, Reaction fingerprints, Simplex representation of molecular structure,
- MeSH
- kinetika MeSH
- kvantitativní vztahy mezi strukturou a aktivitou MeSH
- molekulární modely * MeSH
- molekulární struktura MeSH
- organické látky chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- organické látky MeSH
Computational design of chiral organic catalysts for asymmetric synthesis is a promising technology that can significantly reduce the material and human resources required for the preparation of enantiopure compounds. Herein, for the modeling of catalysts' enantioselectivity, we propose to use the multi-instance learning approach accounting for multiple catalyst conformers and requiring neither conformer selection nor their spatial alignment. A catalyst was represented by an ensemble of conformers, each encoded by three-dimesinonal (3D) pmapper descriptors. A catalyzed reactant transformation was converted into a single molecular graph, a condensed graph of reaction, encoded by 2D fragment descriptors. A whole chemical reaction was finally encoded by concatenated 3D catalyst and 2D transformation descriptors. The performance of the proposed method was demonstrated in the modeling of the enantioselectivity of homogeneous and phase-transfer reactions and compared with the state-of-the-art approaches.
- MeSH
- katalýza * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Stratified flows are commonly observed in numerous industrial processes. For example, a gas-condensate pipeline typically uses a stratified flow regime. However, this flow arrangement is stable only under a specific set of operating conditions that allows the formation of stratification. In this study, the authors analyzed the flow attributes of Prandtl Eyring liquid past an inclined sheet immersed in a stratified medium. The flow also characterizes the features of the magnetic field along with a first-order chemical reaction. Convective boundary constraints associated with the thermosolutal exchange at the extremity of the domain are also prescribed. The fundamental equations of the study are formulated in dimensional PDEs and converted into dimensionless ODEs via similar variables. The numerical solution of the modelled setup is acquired by executing computations using shooting and RK-4 methods. The intelligent computing paradigm working on the mechanism of the back-propagated Levenberg-Marquardt strategy is also capitalized to forecast the behavior of related physical quantities. Graphs and tables are drawn to elaborate the impression of pertinent factors on flow distributions. It is perceived that the momentum profile diminishes with the magnetic field effect, whereas the opposite behavior is observed for the skin friction coefficient. The thermal and concentration distributions were found to dominate in the absence of stratification. Consideration of convective heating and concentration tends to elevate thermal and mass distributions.
- Klíčová slova
- Artificial neural networking, Chemical reaction, Convective boundary constraints, MHD, Prandtl-Eyring fluid, Thermosolutal stratification,
- Publikační typ
- časopisecké články MeSH