Rate constant prediction
Dotaz
Zobrazit nápovědu
This study suggests an approach for the comparison and evaluation of particular compartments with modest experimental setup costs. A glucose level prediction model was used to evaluate the compartment's glucose transport rate across the blood capillary membrane and the glucose utilization rate by the cells. The glucose levels of the blood, subcutaneous tissue, skeletal muscle tissue, and visceral fat were obtained in experiments conducted on hereditary hypertriglyceridemic rats. After the blood glucose level had undergone a rapid change, the experimenter attempted to reach a steady blood glucose level by manually correcting the glucose infusion rate and maintaining a constant insulin infusion rate. The interstitial fluid glucose levels of subcutaneous tissue, skeletal muscle tissue, and visceral fat were evaluated to determine the reaction delay compared with the change in the blood glucose level, the interstitial fluid glucose level predictability, the blood capillary permeability, the effect of the concentration gradient, and the glucose utilization rate. Based on these data, the glucose transport rate across the capillary membrane and the utilization rate in a particular tissue were determined. The rates obtained were successfully verified against positron emission tomography experiments. The subcutaneous tissue exhibits the lowest and the most predictable glucose utilization rate, whereas the skeletal muscle tissue has the greatest glucose utilization rate. In contrast, the visceral fat is the least predictable and has the shortest reaction delay compared with the change in the blood glucose level. The reaction delays obtained for the subcutaneous tissue and skeletal muscle tissue were found to be approximately equal using a metric based on the time required to reach half of the increase in the interstitial fluid glucose level.
- Klíčová slova
- Glucose, Skeletal muscle, Subcutaneous tissue, Transport rate, Utilization rate, Visceral fat,
- MeSH
- glukosa analýza metabolismus MeSH
- hypertriglyceridemie MeSH
- kapilární permeabilita fyziologie MeSH
- kosterní svaly metabolismus MeSH
- krevní glukóza analýza metabolismus MeSH
- krysa rodu Rattus MeSH
- nitrobřišní tuk metabolismus MeSH
- podkožní tuk metabolismus MeSH
- statistické modely MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glukosa MeSH
- krevní glukóza MeSH
Here, we report the data visualization, analysis and modeling for a large set of 4830 SN 2 reactions the rate constant of which (logk) was measured at different experimental conditions (solvent, temperature). The reactions were encoded by one single molecular graph - Condensed Graph of Reactions, which allowed us to use conventional chemoinformatics techniques developed for individual molecules. Thus, Matched Reaction Pairs approach was suggested and used for the analyses of substituents effects on the substrates and nucleophiles reactivity. The data were visualized with the help of the Generative Topographic Mapping approach. Consensus Support Vector Regression (SVR) model for the rate constant was prepared. Unbiased estimation of the model's performance was made in cross-validation on reactions measured on unique structural transformations. The model's performance in cross-validation (RMSE=0.61 logk units) and on the external test set (RMSE=0.80) is close to the noise in data. Performances of the local models obtained for selected subsets of reactions proceeding in particular solvents or with particular type of nucleophiles were similar to that of the model built on the entire set. Finally, four different definitions of model's applicability domains for reactions were examined.
- Klíčová slova
- Condensed Graph of Reaction, Generative Topographic Mapping, Matched Reaction Pairs, Support Vector Regression, bimolecular nucleophilic substitution reactions, models applicability domain,
- MeSH
- chemické modely * MeSH
- cyklické uhlovodíky chemie MeSH
- kinetika MeSH
- oxidace-redukce MeSH
- support vector machine * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cyklické uhlovodíky MeSH
The mobility of contaminant metals in aqueous subsurface environments is largely controlled by their interaction with humic substances as colloidal constituents of Dissolved Organic Matter. Transport models for predicting carrier-bound migration are based on a competitive partitioning process between solid surface and colloids. However, it has been observed that dissociation of multivalent metals from humic complexes is a slow kinetic process, which is even more impeded with increasing time of contact. Based on findings obtained in isotope exchange experiments, the convoluted time dependence of dissociation was fully described by a complex two-site approach, integrating rate "constants" that are in turn time-dependent. Thus, this study presents the treatment of a particular phenomenon: kinetics within kinetics. The analysis showed that the inertization process does not lead to irreversible binding. Consequently, thermodynamic concepts using equilibrium constants remain applicable in speciation and transport modeling if long time frames are appropriate.
- Klíčová slova
- Colloids, Desorption, Humic complexes, Kinetic model, Metal binding, Natural organic matter,
- MeSH
- disociační poruchy MeSH
- huminové látky * analýza MeSH
- kinetika MeSH
- koloidy * MeSH
- kovy MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- huminové látky * MeSH
- koloidy * MeSH
- kovy MeSH
The pancreas, liver and hypothalamus have a regulatory function in the glucose homeostasis. As the blood glucose level changes, these compartments react and the level changes again. Subsequently to this reaction, the interstitial glucose level changes with some delay. In this paper, I propose a hypothesis that the change of the blood glucose level includes information about the estimated rate with which the hypothalamus expects the blood glucose level to return to normal range, by means of regulatory mechanisms of glucose homeostasis. As the interstitial glucose level change reflects the blood glucose level change, I propose a method to estimate the blood-to-interstitial glucose level delay. It is an important factor for glucose level prediction. Once the delay was calculated, it was possible to relate the present blood glucose level and future interstitial glucose level with such coefficients, which do not seem to change over the time of the experiment to a significant extent. Perhaps, it is a parameterization of regulatory processes of glucose homeostasis, which could be possibly encoded within hypothalamus set-points. The delays were constant per subject and ranged from 7 min up to 34 min for hereditary hypertriglyceridemic rats of 230-480 g weight, in experiments with a variable glucose infusion rate.
- MeSH
- biologické modely * MeSH
- extracelulární tekutina metabolismus MeSH
- homeostáza fyziologie MeSH
- hypertriglyceridemie krev MeSH
- hypothalamus metabolismus MeSH
- játra metabolismus MeSH
- krevní glukóza metabolismus fyziologie MeSH
- krysa rodu Rattus MeSH
- monitorování fyziologických funkcí MeSH
- pankreas metabolismus MeSH
- reakční čas MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- krevní glukóza MeSH
We describe a novel approach of reaction representation as a combination of two mixtures: a mixture of reactants and a mixture of products. In turn, each mixture can be encoded using an earlier reported approach involving simplex descriptors (SiRMS). The feature vector representing these two mixtures results from either concatenated product and reactant descriptors or the difference between descriptors of products and reactants. This reaction representation doesn't need an explicit labeling of a reaction center. The rigorous "product-out" cross-validation (CV) strategy has been suggested. Unlike the naïve "reaction-out" CV approach based on a random selection of items, the proposed one provides with more realistic estimation of prediction accuracy for reactions resulting in novel products. The new methodology has been applied to model rate constants of E2 reactions. It has been demonstrated that the use of the fragment control domain applicability approach significantly increases prediction accuracy of the models. The models obtained with new "mixture" approach performed better than those required either explicit (Condensed Graph of Reaction) or implicit (reaction fingerprints) reaction center labeling.
- Klíčová slova
- Chemical reactions, Condensed graph of reaction, Mixtures, Rate constant prediction, Reaction fingerprints, Simplex representation of molecular structure,
- MeSH
- kinetika MeSH
- kvantitativní vztahy mezi strukturou a aktivitou MeSH
- molekulární modely * MeSH
- molekulární struktura MeSH
- organické látky chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- organické látky MeSH
In the present work, an ab initio study on hydration (a metal-ligand replacement by water molecule or OH- group) of cis- and transplatin and their palladium analogs was performed within a neutral pseudomolecule approach (e.g., metal-complex+water as reactant complex). Subsequent replacement of the second ligand was considered. Optimizations were performed at the MP2/6-31+G(d) level with single-point energy evaluation using the CCSD(T)/6-31++G(d,p) approach. For the obtained structures of reactants, transition states (TS's), and products, both thermodynamic (reaction energies and Gibbs energies) and kinetic (rate constants) characteristics were estimated. It was found that all the hydration processes are mildly endothermic reactions-in the first step they require 8.7 and 10.2 kcal/mol for ammonium and chloride replacement in cisplatin and 13.8 and 17.8 kcal/mol in the transplatin case, respectively. Corresponding energies for cispalladium amount to 5.2 and 9.8 kcal/mol, and 11.0 and 17.7 kcal/mol for transpalladium. Based on vibrational analyses at MP2/6-31+G(d) level, transition state theory rate constants were computed for all the hydration reactions. A qualitative agreement between the predicted and known experimental data was achieved. It was also found that the close similarities in reaction thermodynamics of both Pd(II) and Pt(II) complexes (average difference for all the hydration reactions are approximately 1.8 kcal/mol) do not correspond to the TS characteristics. The TS energies for examined Pd(II) complexes are about 9.7 kcal/mol lower in comparison with the Pt analogs. This leads to 10(6) times faster reaction course in the Pd cases. This is by 1 or 2 orders of magnitude more than the results based on experimental measurements.
- MeSH
- chemické modely MeSH
- chloridy chemie MeSH
- cisplatina chemie MeSH
- fyzikální chemie metody MeSH
- kinetika MeSH
- kvartérní amoniové sloučeniny chemie MeSH
- ligandy MeSH
- molekulární konformace MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- palladium chemie MeSH
- platina chemie MeSH
- teplota MeSH
- termodynamika MeSH
- voda chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- chloridy MeSH
- cisplatina MeSH
- kvartérní amoniové sloučeniny MeSH
- ligandy MeSH
- palladium MeSH
- platina MeSH
- transplatin MeSH Prohlížeč
- voda MeSH
PREMISE OF THE STUDY: Thinning is a frequent disturbance in managed forests, especially to increase radial growth. Due to buckling and bending risk associated with height and mass growth, tree verticality is strongly constrained in slender trees growing in dense forests and poor light conditions. Tree verticality is controlled by uprighting movements implemented from local curvatures induced by wood maturation stresses and/or eccentric radial growth. This study presents the first attempt to compare the real uprighting movements in mature trees using a theoretical model of posture control. METHODS: Stem lean and curvature were measured by Terrestrial LiDAR Scanner (TLS) technology before and 6 years after thinning and compared to unthinned control poles. Measures for several tree and wood traits were pooled together to implement a widely used biomechanical model of tree posture control. Changes in observed stem lean were then compared with the model predictions, and discrepancies were reviewed. KEY RESULTS: Even under a highly constrained environment, most control poles were able to counterbalance gravitational curvature and avoid sagging. Thinning stimulated uprighting movements. The theoretical uprighting curvature rate increased just after thinning, then slowed after 2 years, likely due to the stem diameter increase. The biomechanical model overestimated the magnitude of uprighting. CONCLUSIONS: Most suppressed beech poles maintain a constant lean angle, and uprighting movements occur after thinning, indicating that stem lean is plastic in response to light conditions. Acclimation of posture control to other changes in growth condition should be investigated, and lean angles should be measured in forest inventories as an indicator of future wood quality.
- Klíčová slova
- Fagus sylvatica, Fagaceae, Terrestrial LiDAR Scanner, gravitational curvature, gravitropic curvature, posture control, stem lean, thinning, tree morphology,
- MeSH
- biologické modely * MeSH
- biomechanika MeSH
- buk (rod) růst a vývoj MeSH
- dřevo MeSH
- lesnictví MeSH
- stromy růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- validační studie MeSH
Kinetics of homogeneous nucleation in supersaturated vapor of 1-propanol was studied using an upward thermal diffusion cloud chamber. Helium was used as a noncondensable carrier gas and the influence of its pressure on observed nucleation rates was investigated. The isothermal nucleation rates were determined by a photographic method that is independent on any nucleation theory. In this method, the trajectories of growing droplets are recorded using a charge coupled device camera and the distribution of local nucleation rates is determined by image analysis. The nucleation rate measurements of 1-propanol were carried out at four isotherms 260, 270, 280, and 290 K. In addition, the pressure dependence was investigated on the isotherms 290 K (50, 120, and 180 kPa) and 280 K (50 and 120 kPa). The isotherm 270 K was measured at 25 kPa and the isotherm 260 K at 20 kPa. The experiments confirm the earlier observations from several thermal diffusion chamber investigations that the homogeneous nucleation rate of 1-propanol tends to increase with decreasing total pressure in the chamber. In order to reduce the possibility that the observed phenomenon is an experimental artifact, connected with the generally used one-dimensional description of transfer processes in the chamber, a recently developed two-dimensional model of coupled heat, mass, and momentum transfer inside the chamber was used and results of both models were compared. It can be concluded that the implementation of the two-dimensional model does not explain the observed effect. Furthermore the obtained results were compared both to the predictions of the classical theory and to the results of other investigators using different experimental devices. Plotting the experimental data on the so-called Hale plot shows that our data seem to be consistent both internally and also with the data of others. Using the nucleation theorem the critical cluster sizes were obtained from the slopes of the individual isotherms and compared with the Kelvin prediction. The influence of total pressure on the observed isothermal nucleation rate was studied in another experiment, where not only temperature but also supersaturation was kept constant as the total pressure was changed. It was shown that the dependence of the nucleation rate on pressure gets stronger as pressure decreases.
- Publikační typ
- časopisecké články MeSH
Non-invasive methods of determination of baroreflex sensitivity (BRS, ms/mmHg) are based on beat-to-beat systolic blood pressure and inter-beat interval recording. Sequential methods and spectral methods at spontaneous breathing include transient superposition of breathing and 0.1 Hz rhythms. Previously, a cross-spectral method of analysis was used, at constant breathing rate using a metronome set at 0.33 Hz, enabling separate determination of BRS at 0.1 Hz (BRS(0.1Hz)) and respiratory rhythms (BRS(0.33Hz)). The aim of the present study was to evaluate the role of breathing in the spectral method of BRS determination with respect to age and hypertension. Such information would be important in evaluation of BRS at pathological conditions associated with extremely low BRS levels. Blood pressure was recorded by Finapres (5 minutes, controlled breathing at 0.33 Hz) in 118 healthy young subjects (YS: mean age 21.0+/-1.3 years), 26 hypertensive patients (HT: mean age 48.6+/-10.3 years) with 26 age-matched controls (CHT: mean age 46.3+/-8.6 years). A comparison of BRS(0.1Hz) and BRS(0.33Hz) was made. Statistically significant correlations were found between BRS(0.1Hz) and BRS(0.33Hz) in all groups: YS: r=0.52, p<0.01, HT: r=0.47, p<0.05, and CHT: r=0.70, p<0.01. The regression equations indicated the existence of a breathing-dependent component unrelated to BRS (YS: BRS(0.33Hz)=2.63+1.14*BRS(0.1Hz); HT: BRS(0.33Hz)=3.19+0.91*BRS(0.1Hz); and CHT: BRS(0.33Hz)=1.88+ +1.01*BRS(0.1Hz); differences between the slopes and the slope of identity line were insignificant). The ratios of BRS(0.1Hz) to BRS(0.33Hz) were significantly lower than 1 (p<0.01) in all groups (YS: 0.876+/-0.419, HT: 0.628+/-0.278, and CHT: 0.782+/-0.260). Thus, BRS evaluated at the breathing rate overestimates the real baroreflex sensitivity. This is more pronounced at low values of BRS, which is more important in patients with pathologic low BRS. For diagnostic purposes we recommend the evaluation of BRS at the frequency of 0.1 Hz using metronome-controlled breathing at a frequency that is substantially higher than 0.1 Hz and is not a multiple of 0.1 Hz to eliminate respiratory baroreflex-non-related influence and resonance effect on heart rate fluctuations.
- MeSH
- baroreflex * MeSH
- časové faktory MeSH
- dospělí MeSH
- hypertenze patofyziologie MeSH
- krevní tlak * MeSH
- lidé středního věku MeSH
- lidé MeSH
- mechanika dýchání * MeSH
- měření krevního tlaku metody MeSH
- mladý dospělý MeSH
- modely kardiovaskulární * MeSH
- prediktivní hodnota testů MeSH
- srdeční frekvence * MeSH
- věkové faktory MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Neutrinoless double beta decay (0νββ) is a yet unobserved nuclear process that would demonstrate Lepton number violation, a clear evidence of beyond standard model physics. The process two neutrino double beta decay (2νββ) is allowed by the standard model and has been measured in numerous experiments. In this Letter, we report a measurement of 2νββ decay half-life of ^{100}Mo to the ground state of ^{100}Ru of [7.07±0.02(stat)±0.11(syst)]×10^{18} yr by the CUPID-Mo experiment. With a relative precision of ±1.6% this is the most precise measurement to date of a 2νββ decay rate in ^{100}Mo. In addition, we constrain higher-order corrections to the spectral shape, which provides complementary nuclear structure information. We report a novel measurement of the shape factor ξ_{3,1}=0.45±0.03(stat)±0.05(syst) based on a constraint on the ratio of higher-order terms from theory, which can be reliably calculated. This is compared to theoretical predictions for different nuclear models. We also extract the first value for the effective axial vector coupling constant obtained from a spectral shape study of 2νββ decay.
- Publikační typ
- časopisecké články MeSH