The 20S proteasome, a critical component of the ubiquitin-proteasome system, plays a central role in regulating protein degradation in eukaryotic cells. Marizomib (MZB), a natural γ-lactam-β-lactone compound derived from Salinispora tropica, is a potent 20S proteasome covalent inhibitor with demonstrated anticancer properties. Its broad-spectrum inhibition of all three proteasome subunits and ability to cross the blood-brain barrier has made it a promising therapeutic candidate for glioblastoma. Here, we present the cryo-EM structure of the human 20S proteasome in complex with MZB at 2.55 Å resolution. This structure reveals the binding mode of MZB to all six catalytic subunits within the two β-rings of the 20S proteasome, providing a detailed molecular understanding of its irreversible inhibitory mechanism. These findings explain the therapeutic potential of MZB at the molecular level and highlight marine-derived natural products in targeting the proteasome for anticancer treatment.
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
The assembly of the mitoribosomal small subunit involves folding and modification of rRNA, and its association with mitoribosomal proteins. This process is assisted by a dynamic network of assembly factors. Conserved methyltransferases Mettl15 and Mettl17 act on the solvent-exposed surface of rRNA. Binding of Mettl17 is associated with the early assembly stage, whereas Mettl15 is involved in the late stage, but the mechanism of transition between the two was unclear. Here, we integrate structural data from Trypanosoma brucei with mammalian homologs and molecular dynamics simulations. We reveal how the interplay of Mettl15 and Mettl17 in intermediate steps links the distinct stages of small subunit assembly. The analysis suggests a model wherein Mettl17 acts as a platform for Mettl15 recruitment. Subsequent release of Mettl17 allows a conformational change of Mettl15 for substrate recognition. Upon methylation, Mettl15 adopts a loosely bound state which ultimately leads to its replacement by initiation factors, concluding the assembly. Together, our results indicate that assembly factors Mettl15 and Mettl17 cooperate to regulate the biogenesis process, and present a structural data resource for understanding molecular adaptations of assembly factors in mitoribosome.
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
The U4 small nuclear RNA (snRNA) forms a duplex with the U6 snRNA and, together with U5 and ~30 proteins, is part of the U4/U6.U5 tri-snRNP complex, located at the core of the major spliceosome. Recently, recurrent de novo variants in the U4 RNA, transcribed from the RNU4-2 gene, and in at least two other RNU genes were discovered to cause neurodevelopmental disorder. We detected inherited and de novo heterozygous variants in RNU4-2 (n.18_19insA and n.56T>C) and in four out of the five RNU6 paralogues (n.55_56insG and n.56_57insG) in 135 individuals from 62 families with non-syndromic retinitis pigmentosa (RP), a rare form of hereditary blindness. We show that these variants are recurrent among RP families and invariably cluster in close proximity within the three-way junction (between stem-I, the 5' stem-loop and stem-II) of the U4/U6 duplex, affecting its natural conformation. Interestingly, this region binds to numerous splicing factors of the tri-snRNP complex including PRPF3, PRPF8 and PRPF31, previously associated with RP as well. The U4 and U6 variants identified seem to affect snRNP biogenesis, namely the U4/U6 di-snRNP, which is an assembly intermediate of the tri-snRNP. Based on the number of positive cases observed, deleterious variants in RNU4-2 and in RNU6 paralogues could be a significant cause of isolated or dominant RP, accounting for up to 1.2% of all undiagnosed RP cases. This study highlights the role of non-coding genes in rare Mendelian disorders and uncovers pleiotropy in RNU4-2, where different variants underlie neurodevelopmental disorder and RP.
- Klíčová slova
- hereditary disease, non-coding, retinitis pigmentosa, snRNA, spliceosome, splicing,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Connections between the mechanical properties of DNA and biological functions have been speculative due to the lack of methods to measure or predict DNA mechanics at scale. Recently, a proxy for DNA mechanics, cyclizability, was measured by loop-seq and enabled genome-scale investigation of DNA mechanics. Here, we use this dataset to build a computational model predicting bias-corrected intrinsic cyclizability, with near-perfect accuracy, solely based on DNA sequence. Further, the model predicts intrinsic bending direction in 3D space. Using this tool, we aimed to probe mechanical selection - that is, the evolutionary selection of DNA sequence based on its mechanical properties - in diverse circumstances. First, we found that the intrinsic bend direction of DNA sequences correlated with the observed bending in known protein-DNA complex structures, suggesting that many proteins co-evolved with their DNA partners to capture DNA in its intrinsically preferred bent conformation. We then applied our model to large-scale yeast population genetics data and showed that centromere DNA element II, whose consensus sequence is unknown, leaving its sequence-specific role unclear, is under mechanical selection to increase the stability of inner-kinetochore structure and to facilitate centromeric histone recruitment. Finally, in silico evolution under strong mechanical selection discovered hallucinated sequences with cyclizability values so extreme that they required experimental validation, yet, found in nature in the densely packed mitochondrial(mt) DNA of Namystynia karyoxenos, an ocean-dwelling protist with extreme mitochondrial gene fragmentation. The need to transmit an extraordinarily large amount of mtDNA, estimated to be > 600 Mb, in combination with the absence of mtDNA compaction proteins may have pushed mechanical selection to the extreme. Similarly extreme DNA mechanics are observed in bird microchromosomes, although the functional consequence is not yet clear. The discovery of eccentric DNA mechanics in unrelated unicellular and multicellular eukaryotes suggests that we can predict extreme natural biology which can arise through strong selection. Our methods offer a way to study the biological functions of DNA mechanics in any genome and to engineer DNA sequences with desired mechanical properties.
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
It is now possible to generate large volumes of high-quality images of biomolecules at near-atomic resolution and in near-native states using cryogenic electron microscopy/electron tomography (Cryo-EM/ET). However, the precise annotation of structures like filaments and membranes remains a major barrier towards applying these methods in high-throughput. To address this, we present TARDIS (Transformer-based Rapid Dimensionless Instance Segmentation), a machine-learning framework for fast and accurate annotation of micrographs and tomograms. TARDIS combines deep learning for semantic segmentation with a novel geometric model for precise instance segmentation of various macromolecules. We develop pre-trained models within TARDIS for segmenting microtubules and membranes, demonstrating high accuracy across multiple modalities and resolutions, enabling segmentation of over 13,000 tomograms from the CZI Cryo-Electron Tomography data portal. As a modular framework, TARDIS can be extended to new structures and imaging modalities with minimal modification. TARDIS is open-source and freely available at https://github.com/SMLC-NYSBC/TARDIS, and accelerates analysis of high-resolution biomolecular structural imaging data.
- Klíčová slova
- CNN, Cryo-EM/ET, DIST, Filaments, Instance Segmentation, Membranes, Microtubules, Point Cloud, Segmentation, Semantic Segmentation, TARDIS, TEM EM/ET,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Our understanding of the vertebrate immune system is dominated by a few model organisms such as mice. This use of a few model systems is reasonable if major features of the immune systems evolve slowly and are conserved across most vertebrates, but may be problematic if there is substantial macroevolutionary change in immune responses. Here, we present a test of the macroevolutionary stability, across 15 species of jawed fishes, of the transcriptomic response to a standardized immune challenge. Intraperitoneal injection of an immune adjuvant (alum) induces a fibrosis response in nearly all jawed fishes, which in some species contributes to anti-helminth resistance. Despite this conserved phenotypic response, the underlying transcriptomic response is highly inconsistent across species. Although many gene orthogroups exhibit differential expression between saline versus alum-injected fish in at least one species, few orthogroups exhibit consistent differential expression across species. This result suggests that although the phenotypic response to alum (fibrosis) is highly conserved, the underlying gene regulatory architecture is very flexible and cannot readily be extrapolated from any one species to fishes (or vertebrates) more broadly. The vertebrate immune response is remarkably changeable over macroevolutionary time, requiring a diversity of model organisms to describe effectively.
- Klíčová slova
- evolutionary immunology, fibrosis, transcriptome,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Non-canonical (non-B) DNA structures-e.g., bent DNA, hairpins, G-quadruplexes, Z-DNA, etc.-which form at certain sequence motifs (e.g., A-phased repeats, inverted repeats, etc.), have emerged as important regulators of cellular processes and drivers of genome evolution. Yet, they have been understudied due to their repetitive nature and potentially inaccurate sequences generated with short-read technologies. Here we comprehensively characterize such motifs in the long-read telomere-to-telomere (T2T) genomes of human, bonobo, chimpanzee, gorilla, Bornean orangutan, Sumatran orangutan, and siamang. Non-B DNA motifs are enriched at the genomic regions added to T2T assemblies, and occupy 9-15%, 9-11%, and 12-38% of autosomes, and chromosomes X and Y, respectively. Functional regions (e.g., promoters and enhancers) and repetitive sequences are enriched in non-B DNA motifs. Non-B DNA motifs concentrate at short arms of acrocentric chromosomes in a pattern reflecting their satellite repeat content and might contribute to satellite dynamics in these regions. Most centromeres and/or their flanking regions are enriched in at least one non-B DNA motif type, consistent with a potential role of non-B structures in determining centromeres. Our results highlight the uneven distribution of predicted non-B DNA structures across ape genomes and suggest their novel functions in previously inaccessible genomic regions.
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Ionizing radiotherapy (RT) is a widely used palliative and curative treatment strategy for malignancies. In solid tumors, RT-induced double strand breaks lead to the accumulation of indels, and their repair by non-homologous end-joining has been linked to the ID8 mutational signature in resistant cells. However, the extent of RT-induced DNA damage in hematologic malignancies and its impact on their evolution and interplay with commonly used chemotherapies has not yet been explored. Here, we interrogated 580 whole genome sequencing (WGS) from patients with large B-cell lymphoma, multiple myeloma, and myeloid neoplasms and identified ID8 only in relapsed disease. Yet, it was detected after exposure to both RT and mutagenic chemotherapy (i.e., platinum). Using WGS of single-cell colonies derived from treated lymphoma cells, we revealed a dose-response relationship between RT and platinum and ID8. Finally, using ID8 as a genomic barcode we demonstrate that a single RT-resistant cell may seed systemic relapse.
- Klíčová slova
- DNA damage, Diffuse Large B-cell Lymphoma, Multiple Myeloma, Mutational Signatures, Radiation, Radiotherapy, Whole Genome Sequencing,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Progress in the management of critical care syndromes such as sepsis, Acute Respiratory Distress Syndrome (ARDS), and trauma has slowed over the last two decades, limited by the inherent heterogeneity within syndromic illnesses. Numerous immune endotypes have been proposed in sepsis and critical care, however the overlap of the endotypes is unclear, limiting clinical translation. The SUBSPACE consortium is an international consortium that aims to advance precision medicine through the sharing of transcriptomic data. By evaluating the overlap of existing immune endotypes in sepsis across over 6,000 samples, we developed cell-type specific signatures to quantify dysregulation in these immune compartments. Myeloid and lymphoid dysregulation were associated with disease severity and mortality across all cohorts. This dysregulation was not only observed in sepsis but also in ARDS, trauma, and burn patients, indicating a conserved mechanism across various critical illness syndromes. Moreover, analysis of randomized controlled trial data revealed that myeloid and lymphoid dysregulation is linked to differential mortality in patients treated with anakinra or corticosteroids, underscoring its prognostic and therapeutic significance. In conclusion, this novel immunology-based framework for quantifying cellular compartment dysregulation offers a valuable tool for prognosis and therapeutic decision-making in critical illness.
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
A DNA sequence pattern, or "motif", is an essential representation of DNA-binding specificity of a transcription factor (TF). Any particular motif model has potential flaws due to shortcomings of the underlying experimental data and computational motif discovery algorithm. As a part of the Codebook/GRECO-BIT initiative, here we evaluated at large scale the cross-platform recognition performance of positional weight matrices (PWMs), which remain popular motif models in many practical applications. We applied ten different DNA motif discovery tools to generate PWMs from the "Codebook" data comprised of 4,237 experiments from five different platforms profiling the DNA-binding specificity of 394 human proteins, focusing on understudied transcription factors of different structural families. For many of the proteins, there was no prior knowledge of a genuine motif. By benchmarking-supported human curation, we constructed an approved subset of experiments comprising about 30% of all experiments and 50% of tested TFs which displayed consistent motifs across platforms and replicates. We present the Codebook Motif Explorer (https://mex.autosome.org), a detailed online catalog of DNA motifs, including the top-ranked PWMs, and the underlying source and benchmarking data. We demonstrate that in the case of high-quality experimental data, most of the popular motif discovery tools detect valid motifs and generate PWMs, which perform well both on genomic and synthetic data. Yet, for each of the algorithms, there were problematic combinations of proteins and platforms, and the basic motif properties such as nucleotide composition and information content offered little help in detecting such pitfalls. By combining multiple PMWs in decision trees, we demonstrate how our setup can be readily adapted to train and test binding specificity models more complex than PWMs. Overall, our study provides a rich motif catalog as a solid baseline for advanced models and highlights the power of the multi-platform multi-tool approach for reliable mapping of DNA binding specificities.
- Klíčová slova
- ChIP-Seq, DNA binding specificity, DNA motif discovery, GHT-SELEX, HT-SELEX, PBM, PSSM, PWM, SMiLE-Seq, TFBS, benchmarking, position weight matrices, transcription factor binding sites, transcription factors,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH