The distribution and morphology of neuronal degeneration were observed and analyzed in each sector of the zona incerta in a lithium‑pilocarpine (LiCl) Wistar rat model of status epilepticus in 12, 15, 18, 21, and 25‑day‑old rats and survival intervals of 4, 8, 12, 24, and 48 hours. Status epilepticus was induced via intraperitoneal (IP) injection of LiCl (3 mmol/kg) 24 hours before an injection of pilocarpine (40 mg/kg, IP). Motor seizures were suppressed by paraldehyde (0.3‑0.6 ml/kg, IP) two hours after status epilepticus onset. Animals were anesthetized using urethane and perfused with phosphate‑buffered saline followed by 4% paraformaldehyde. Brains were sectioned and Nissl stained for map guidance, with fluoro‑Jade B fluorescence used to detect degenerated neurons. Fluoro‑jade B‑positive neurons were plotted to a standard stereotaxic atlas, their distribution was quantified, and their long‑axis diameter was measured. Fluoro‑jade B‑positive neurons were found in pups aged 15 days and older 24 hours after status epilepticus, in which their numbers increased, and their perikaryon size decreased with advancing age. Thus, neuronal damage severity was dependent on age and survival interval. Neuronal damage was only found in the rostral sector of the zona incerta, a region that exhibits a small number of inhibitory neurons and is reciprocally connected to the limbic cortex. This system of hyperactivity, coupled with inhibitory neurons, may be the underlying cause of the neuronal degeneration and explain why it was confined to the rostral sector of the zona incerta.
- MeSH
- chlorid lithný toxicita MeSH
- degenerace nervu * patologie etiologie MeSH
- fluoresceiny MeSH
- krysa rodu Rattus MeSH
- modely nemocí na zvířatech MeSH
- neurony * patologie MeSH
- novorozená zvířata MeSH
- pilokarpin toxicita MeSH
- potkani Wistar MeSH
- status epilepticus * patologie chemicky indukované komplikace MeSH
- věkové faktory MeSH
- zona incerta * patologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorid lithný MeSH
- fluoresceiny MeSH
- fluoro jade MeSH Prohlížeč
- pilokarpin MeSH
Here, we assessed the heteroaggregation of polystyrene (PS) and poly(vinyl chloride) (PVC) nanoplastics with SiO2 as a model of natural colloids. Homoaggregation and heteroaggregation were evaluated as a function of CaCl2 (0-100 mM) and natural organic matter (NOM) (50 mg L-1) at a designated concentration of nanoplastics (200 μg L-1). Critical coagulation concentrations (CCC) of nanoplastics were determined in homoaggregation and heteroaggregation experiments with SiO2 and CaCl2. The attachment efficiency (α) was calculated by quantifying the number of nanoplastics in the presence of CaCl2, NOM, and SiO2 using single-particle inductively coupled plasma mass spectrometry (spICP-MS) and pseudo-first-order kinetics. The calculated α was fed into the SimpleBox4Plastics model to predict the fate of nanoplastics across air, water, soil, and sediment compartments. Nanoplastics exhibited high stability against homoaggregation, while significant heteroaggregation with SiO2 occurred at CaCl2 concentrations above 100 mM. The influence of NOM was also evaluated, showing a reduction in heteroaggregation with SiO2 for both nanoplastic types. Sensitivity analysis indicated that the degradation half-life of the tested nanoplastics had a more significant impact on persistence than did α. The results emphasize the environmental stability of nanoplastics, particularly in freshwater and soil compartments, and the critical role of NOM and emission pathways in determining their fate.
- Klíčová slova
- SimpleBox4Plastics model, freshwater, microplastics, natural organic matter, plastic fate,
- MeSH
- chemické modely MeSH
- chlorid vápenatý chemie MeSH
- koloidy chemie MeSH
- nanočástice MeSH
- oxid křemičitý chemie MeSH
- polystyreny * chemie MeSH
- polyvinylchlorid * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorid vápenatý MeSH
- koloidy MeSH
- oxid křemičitý MeSH
- polystyreny * MeSH
- polyvinylchlorid * MeSH
Cadmium crosses the blood-brain barrier inducing damage to neurons. Cell impairment is predominantly linked to oxidative stress and glutathione (GSH) depletion. On the other hand, several reports have described an increase of GSH levels in neuronal cells after CdCl2 exposure. Therefore, the aim of the present report was to investigate the relation between changes in GSH levels and mitochondrial damage in neuronal cells after CdCl2 treatment. To characterize neuronal impairment after CdCl2 treatment (0-200 μM) for 1-48 h, we used the SH-SY5Y cell line. We analyzed GSH metabolism and determined mitochondrial activity using high-resolution respirometry. CdCl2 treatment induced both the decreases and increases of GSH levels in SH-SY5Y cells. GSH concentration was significantly increased in cells incubated with up to 50 μM CdCl2 but only 100 μM CdCl2 induced GSH depletion linked to increased ROS production. The overexpression of proteins involved in GSH synthesis increased in response to 50 and 100 μM CdCl2 after 6 h. Finally, strong mitochondrial impairment was detected even in 50 μM CdCl2 treated cells after 24 h. We conclude that a significant decrease in mitochondrial activity can be observed in 50 μM CdCl2 even without the occurrence of GSH depletion in SH-SY5Y cells.
- Klíčová slova
- Cadmium toxicity, Glutathione depletion, Mitochondrial damage, Neuronal cells, Oxidative stress,
- MeSH
- chlorid kademnatý * toxicita MeSH
- glutathion * metabolismus MeSH
- lidé MeSH
- mitochondrie * účinky léků metabolismus MeSH
- nádorové buněčné linie MeSH
- neurony * účinky léků metabolismus MeSH
- oxidační stres účinky léků MeSH
- reaktivní formy kyslíku metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorid kademnatý * MeSH
- glutathion * MeSH
- reaktivní formy kyslíku MeSH
To investigate the effect of stalk type on the metallization degrees in FeCl3-derived magnetic biochar (MBC), MBC was synthesized via an impregnation-pyrolysis method using six different stalks. The Fe0 content in MBC significantly influenced its magnetic properties and ostensibly governed its catalytic capabilities. Analysis of the interaction between stalks and FeCl3 revealed that the variation in metallization degrees, resulting from FeCl2 decomposition (6.1%) and stalk-mediated reduction (20.7%), was directly responsible for the observed differences in MBC metallization. The presence of oxygen-containing functional groups and fixed carbon appeared to promote metallization in MBC induced by reduction. A series of statistical analyses indicated that the cellulose, lignin, and hemicellulose content of the stalks were key factors contributing to differences in MBC metallization degrees. Further exploration revealed that hemicellulose and cellulose were more effective than lignin in enhancing metallization through FeCl2 decomposition and reduction. Constructing stalk models demonstrated that the variance in the content of these three biomass components across the six stalk types could lead to differences in the metallization degree attributable to reduction and FeCl2 decomposition, thereby affecting the overall metallization degree of MBC. A prediction model for MBC metallization degree was developed based on these findings. Moreover, the elevated Si content in some stalks facilitated the formation of Fe2(SiO4), which subsequently impeded the reduction process. This study provides a theoretical foundation for the informed selection of stalk feedstocks in the production of FeCl3-derived MBC.
- Klíčová slova
- Different stalk, FeCl(3)-Derived magnetic biochar, Metallization degree, Reduction reaction, TG-MS,
- MeSH
- celulosa chemie MeSH
- chloridy * chemie MeSH
- dřevěné a živočišné uhlí * chemie MeSH
- lignin chemie MeSH
- polysacharidy MeSH
- pyrolýza * MeSH
- železité sloučeniny * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biochar MeSH Prohlížeč
- celulosa MeSH
- chloridy * MeSH
- dřevěné a živočišné uhlí * MeSH
- ferric chloride MeSH Prohlížeč
- hemicellulose MeSH Prohlížeč
- lignin MeSH
- polysacharidy MeSH
- železité sloučeniny * MeSH
BACKGROUND: Glucocorticoids are commonly used in children with different chronic diseases. Growth failure represents a so far untreatable undesired side-effect. As lithium chloride (LiCl) is known to induce cell renewal in various tissues, we hypothesized that LiCl may prevent glucocorticoid-induced growth failure. METHODS: We monitored growth of fetal rat metatarsals cultured ex-vivo with dexamethasone and/or LiCl, while molecular mechanisms were explored through RNA sequencing by implementing the differential gene expression and gene set analysis. Quantification of β-catenin in human growth plate cartilage cultured with dexamethasone and/or LiCl was added for verification. RESULTS: After 14 days of culture, the length of dexamethasone-treated fetal rat metatarsals increased by 1.4 ± 0.2 mm compared to 2.4 ± 0.3 mm in control bones (p < 0.001). The combination of LiCl and dexamethasone led to bone length increase of 1.9 ± 0.3 mm (p < 0.001 vs. dexamethasone alone). By adding lithium, genes for cell cycle and Wnt/β-catenin, Hedgehog and Notch signaling, were upregulated compared to dexamethasone alone group. CONCLUSIONS: LiCl has the potential to partially rescue from dexamethasone-induced bone growth impairment in an ex vivo model. Transcriptomics identified cell renewal and proliferation as candidates for the underlying mechanisms. Our observations may open up the development of a new treatment strategy for bone growth disorders. IMPACT: LiCl is capable to prevent glucocorticoid-induced growth failure in rat metatarsals in vitro. The accompanying drug-induced transcriptomic changes suggested cell renewal and proliferation as candidate underlying mechanisms. Wnt/beta-catenin pathway could be one of those novel mechanisms.
- MeSH
- beta-katenin * metabolismus MeSH
- chlorid lithný * farmakologie MeSH
- dexamethason * farmakologie MeSH
- glukokortikoidy farmakologie MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- metatarzální kosti * účinky léků MeSH
- potkani Sprague-Dawley MeSH
- proliferace buněk účinky léků MeSH
- růstová ploténka účinky léků metabolismus MeSH
- signální dráha Wnt účinky léků MeSH
- vývoj kostí účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- beta-katenin * MeSH
- chlorid lithný * MeSH
- dexamethason * MeSH
- glukokortikoidy MeSH
According to experimental and clinical studies, status epilepticus (SE) causes neurodegenerative morphological changes not only in the hippocampus and other limbic structures, it also affects the thalamus and the neocortex. In addition, several studies reported atrophy, metabolic changes, and neuronal degeneration in the dorsal striatum. The literature lacks studies investigating potential neuronal damage in the ventral component of the striatopallidal complex (ventral striatum [VS] and ventral pallidum) in SE experimentations. To better understand the development of neuronal damage in the striatopallidal complex associated with SE, the detected neuronal degeneration in the compartments of the VS, namely, the nucleus accumbens (NAc) and the olfactory tubercle (OT), was analyzed. The experiments were performed on Wistar rats at age of 25-day-old pups and 3-month-old adult animals. Lithium-pilocarpine model of SE was used. Lithium chloride (3 mmol/kg, ip) was injected 24 h before administering pilocarpine (40 mg/kg, ip). This presented study demonstrates the variability of post SE neuronal damage in 25-day-old pups in comparison with 3-month-old adult rats. The NAc exhibited small to moderate number of Fluoro-Jade B (FJB)-positive neurons detected 4 and 8 h post SE intervals. The number of degenerated neurons in the shell subdivision of the NAc significantly increased at survival interval of 12 h after the SE. FJB-positive neurons were evidently more prominent occupying the whole anteroposterior and mediolateral extent of the nucleus at longer survival intervals of 24 and 48 h after the SE. This was also the case in the bordering vicinity between the shell and the core compartments but with clusters of degenerating cells. The severity of damage of the shell subdivision of the NAc reached its peak at an interval of 24 h post SE. Isolated FJB-positive neurons were detected in the ventral peripheral part of the core compartment. Degenerated neurons persisted in the shell subdivision of the NAc 1 week after SE. However, the quantity of cell damage had significantly reduced in comparison with the aforementioned shorter intervals. The third layer of the OT exhibited more degenerated neurons than the second layer. The FJB-positive cells in the young animals were higher than in the adult animals. The morphology of those cells was identical in the two age groups except in the OT.
- Klíčová slova
- basal ganglia, degenerative neuronal changes, epilepsy, nucleus accumbens, olfactory tubercle, seizure, status epilepticus, ventral pallidum, ventral striatum,
- MeSH
- chlorid lithný toxicita MeSH
- degenerace nervu * patologie chemicky indukované MeSH
- fluoresceiny MeSH
- krysa rodu Rattus MeSH
- modely nemocí na zvířatech MeSH
- neurony patologie MeSH
- novorozená zvířata MeSH
- pilokarpin toxicita MeSH
- potkani Wistar * MeSH
- status epilepticus * chemicky indukované patologie MeSH
- striatum ventrale patologie MeSH
- věkové faktory MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- chlorid lithný MeSH
- fluoresceiny MeSH
- fluoro jade MeSH Prohlížeč
- pilokarpin MeSH
Biofilm formation is an effective survival strategy of plant-associated microorganisms in hostile environments, so the application of biofilm-forming and exopolysaccharide (EPS)-producing beneficial microbes to plants has received more attention in recent years. This study examined the ability of biofilm and EPS production of Bacillus subtilis and Bacillus thuringiensis strains under different NaCl concentrations (0, 50, 100, 200, and 400 mmol/L), pH values (5.5, 6.5, 7.5, and 8.5), and phosphate levels (0, 25, 50, and 100 mmol/L at 0 and 400 mmol/L NaCl). B. subtilis BS2 and B. thuringiensis BS6/BS7 strains significantly increased biofilm formation in a similar pattern to EPS production under salt stress. B. subtilis BS2/BS3 enhanced biofilm production at slightly acidic pH with a lower EPS production but the other strains formed considerably more amount of biofilm and EPS at alkaline pH. Interestingly, higher levels of phosphate substantially decreased biofilm and EPS production at 0 mmol/L NaCl but increased biofilm formation at 400 mmol/L salt concentration. Overall, contrary to phosphate, salt and pH differently influenced biofilm and EPS production by Bacillus strains. EPS production contributed to biofilm formation to some extent under all the conditions tested. Some Bacillus strains produced more abundant biofilm under salt and pH stress, indicating their potential to form in vivo biofilms in rhizosphere and on plants, particularly under unfavorable conditions.
- Klíčová slova
- Biofilms, Exopolysaccharides, Salt, Stress, pH,
- MeSH
- Bacillus subtilis fyziologie metabolismus účinky léků MeSH
- Bacillus thuringiensis fyziologie účinky léků MeSH
- bakteriální polysacharidy * metabolismus biosyntéza MeSH
- biofilmy * účinky léků růst a vývoj MeSH
- chlorid sodný * farmakologie metabolismus MeSH
- fosfáty * metabolismus farmakologie MeSH
- koncentrace vodíkových iontů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální polysacharidy * MeSH
- chlorid sodný * MeSH
- exopolysaccharide, Bacillus MeSH Prohlížeč
- fosfáty * MeSH
The identification of genes involved in salinity tolerance has primarily focused on model plants and crops. However, plants naturally adapted to highly saline environments offer valuable insights into tolerance to extreme salinity. Salicornia plants grow in coastal salt marshes, stimulated by NaCl. To understand this tolerance, we generated genome sequences of two Salicornia species and analyzed the transcriptomic and proteomic responses of Salicornia bigelovii to NaCl. Subcellular membrane proteomes reveal that SbiSOS1, a homolog of the well-known SALT-OVERLY-SENSITIVE 1 (SOS1) protein, appears to localize to the tonoplast, consistent with subcellular localization assays in tobacco. This neo-localized protein can pump Na+ into the vacuole, preventing toxicity in the cytosol. We further identify 11 proteins of interest, of which SbiSALTY, substantially improves yeast growth on saline media. Structural characterization using NMR identified it as an intrinsically disordered protein, localizing to the endoplasmic reticulum in planta, where it can interact with ribosomes and RNA, stabilizing or protecting them during salt stress.
- MeSH
- Chenopodiaceae * metabolismus genetika účinky léků MeSH
- chlorid sodný farmakologie metabolismus MeSH
- endoplazmatické retikulum metabolismus MeSH
- proteomika MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- rostlinné proteiny * metabolismus genetika MeSH
- salinita MeSH
- solný stres MeSH
- tabák metabolismus genetika účinky léků MeSH
- tolerance k soli * genetika MeSH
- transkriptom MeSH
- vakuoly metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
Consumption of raw and undercooked meat is considered as an important source of Toxoplasma gondii infections. However, most non-heated meat products contain salt and additives, which affect T. gondii viability. It was our aim to develop an in vitro method to substitute the mouse bioassay for determining the effect of salting on T. gondii viability. Two sheep were experimentally infected by oral inoculation with 6.5 × 104 oocysts. Grinded meat samples of 50 g were prepared from heart, diaphragm, and four meat cuts. Also, pooled meat samples were either kept untreated (positive control), frozen (negative control) or supplemented with 0.6 %, 0.9 %, 1.2 % or 2.7 % NaCl. All samples were digested in pepsin-HCl solution, and digests were inoculated in duplicate onto monolayers of RK13 (a rabbit kidney cell line). Cells were maintained for up to four weeks and parasite growth was monitored by assessing Cq-values using the T. gondii qPCR on cell culture supernatant in intervals of one week and ΔCq-values determined. Additionally, 500 μL of each digest from the individual meat cuts, heart and diaphragm were inoculated in duplicate in IFNγ KO mice. Both sheep developed an antibody response and tissue samples contained similar concentrations of T. gondii DNA. From all untreated meat samples positive ΔCq-values were obtained in the in vitro assay, indicating presence and multiplication of viable parasites. This was in line with the mouse bioassay, with the exception of a negative mouse bioassay on one heart sample. Samples supplemented with 0.6 %-1.2 % NaCl showed positive ΔCq-values over time. The frozen sample and the sample supplemented with 2.7 % NaCl remained qPCR positive but with high Cq-values, which indicated no growth. In conclusion, the in vitro method has successfully been used to detect viable T. gondii in tissues of experimentally infected sheep, and a clear difference in T. gondii viability was observed between the samples supplemented with 2.7 % NaCl and those with 1.2 % NaCl or less.
- Klíčová slova
- Food safety, Inactivation, Meat, Salting, Toxoplasma gondii, Viability,
- MeSH
- chlorid sodný MeSH
- králíci MeSH
- masné výrobky * parazitologie MeSH
- maso parazitologie MeSH
- myši MeSH
- ovce MeSH
- Toxoplasma * genetika MeSH
- toxoplazmóza zvířat * parazitologie MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chlorid sodný MeSH
INTRODUCTION: Carp edema virus (CEV) is a fish poxvirus that primarily infects the gills of common carp. CEV causes koi sleepy disease (KSD), which is highly contagious and can result in mortality of up to 100%. METHODS: In the present study, we analyzed the stress and immune responses during KSD in two strains of common carp with different resistance to CEV: susceptible koi and resistant Amur sazan. Experiments were performed at two temperatures: 12°C and 18°C. In the case of koi carp, we also analyzed the effect of supplementation of 0.6% NaCl into tank water, which prevents mortality of the CEV-infected fish (salt rescue model). RESULTS: We found that CEV-infected koi kept at 18°C had the highest viral load, which correlated with the most severe histopathological changes in the gills. CEV infection resulted in the activation of stress response reflected by the upregulated expression of genes involved in stress response in the stress axis organs and increased levels of cortisol and glucose in the blood plasma. These changes were the most pronounced in CEV-infected koi kept at 18°C. At both temperatures, the activation of antiviral immune response was observed in koi kept under freshwater and NaCl conditions upon CEV infection. Interestingly, a clear downregulation of the expression of adaptive immune genes was observed in CEV-infected koi kept under freshwater at 18°C. CONCLUSION: CEV induces a stress response and modulates adaptive immune response in koi, and this is correlated with the level of viral load and disease development.
- Klíčová slova
- CEV, carp edema virus, common carp, fish poxviruses, immunomodulation, koi sleepy disease, stress,
- MeSH
- chlorid sodný MeSH
- edém MeSH
- imunita MeSH
- infekce vyvolané poxviry * MeSH
- kapři * MeSH
- nemoci ryb * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorid sodný MeSH