stress Dotaz Zobrazit nápovědu
- MeSH
- lidé MeSH
- psychický stres prevence a kontrola MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- MeSH
- diuréza MeSH
- extrakce zubů * MeSH
- fenylacetáty moč MeSH
- kreatinin moč MeSH
- kyselina vanilmandlová moč MeSH
- kyseliny mandlové moč MeSH
- lidé MeSH
- psychický stres * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fenylacetáty MeSH
- kreatinin MeSH
- kyselina vanilmandlová MeSH
- kyseliny mandlové MeSH
Stress as a modern civilization factor significantly affects our lives. While acute stress might have a positive effect on the organism, chronic stress is usually detrimental and might lead to serious health complications. It is known that stress induced by the physical environment (temperature-induced cold stress) can significantly impair the efficacy of cytotoxic chemotherapies and the anti-tumor immune response. On the other hand, epidemiological evidence has shown that patients taking drugs known as β-adrenergic antagonists ("β-blockers"), which are commonly prescribed to treat arrhythmia, hypertension, and anxiety, have significantly lower rates of several cancers. In this review, we summarize the current knowledge about catecholamines as important stress hormones in tumorigenesis and discuss the use of β-blockers as the potential therapeutic agents.
- Klíčová slova
- Adrenergic receptors, catecholamines, dopamine, epinephrine, norepinephrine, stress, tumor, β-blockers,
- MeSH
- adrenalin metabolismus MeSH
- karcinogeneze metabolismus MeSH
- katecholaminy metabolismus MeSH
- lidé MeSH
- nádory etiologie metabolismus MeSH
- noradrenalin metabolismus MeSH
- psychický stres komplikace metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- adrenalin MeSH
- katecholaminy MeSH
- noradrenalin MeSH
The vast majority of agricultural land undergoes abiotic stress that can significantly reduce agricultural yields. Understanding the mechanisms of plant defenses against stresses and putting this knowledge into practice is, therefore, an integral part of sustainable agriculture. In this review, we focus on current findings in plant resistance to four cardinal abiotic stressors-drought, heat, salinity, and low temperatures. Apart from the description of the newly discovered mechanisms of signaling and resistance to abiotic stress, this review also focuses on the importance of primary and secondary metabolites, including carbohydrates, amino acids, phenolics, and phytohormones. A meta-analysis of transcriptomic studies concerning the model plant Arabidopsis demonstrates the long-observed phenomenon that abiotic stressors induce different signals and effects at the level of gene expression, but genes whose regulation is similar under most stressors can still be traced. The analysis further reveals the transcriptional modulation of Golgi-targeted proteins in response to heat stress. Our analysis also highlights several genes that are similarly regulated under all stress conditions. These genes support the central role of phytohormones in the abiotic stress response, and the importance of some of these in plant resistance has not yet been studied. Finally, this review provides information about the response to abiotic stress in major European crop plants-wheat, sugar beet, maize, potatoes, barley, sunflowers, grapes, rapeseed, tomatoes, and apples.
- Klíčová slova
- abiotic stress, cold stress, crop, drought, heat stress, metabolites, phytohormones, salinity,
- MeSH
- Arabidopsis * genetika MeSH
- fyziologický stres genetika MeSH
- pěstování plodin MeSH
- reakce na tepelný šok genetika MeSH
- regulátory růstu rostlin * MeSH
- rostliny MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- přehledy MeSH
- Názvy látek
- regulátory růstu rostlin * MeSH
- MeSH
- emoce MeSH
- fyziologický stres metabolismus MeSH
- hemodynamika MeSH
- koronární nemoc etiologie MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Brain acetylcholinesterase (AChE) variant AChER expression increases with acute stress, and this persists for an extended period, although the timing, strain and laterality differences, have not been explored previously. Acute stress transiently increases acetylcholine release, which in turn may increase activity of cholinesterases. Also the AChE gene contains a glucocorticoid response element (GRE), and stress-inducible AChE transcription and activity changes are linked to increased glucocorticoid levels. Corticotropin-releasing hormone knockout (CRH-KO) mice have basal glucocorticoid levels similar to wild type (WT) mice, but much lower levels during stress. Hence we hypothesized that CRH is important for the cholinesterase stress responses, including butyrylcholinesterase (BChE). We used immobilization stress, acute (30 or 120 min) and repeated (120 min daily × 7) in 48 male mice (24 WT and 24 CRH-KO) and determined AChER, AChE and BChE mRNA expression and AChE and BChE activities in left and right brain areas (as cholinergic signaling shows laterality). Immobilization decreased BChE mRNA expression (right amygdala, to 0.5, 0.3 and 0.4, × control respectively) and AChER mRNA expression (to 0.5, 0.4 and 0.4, × control respectively). AChE mRNA expression increased (1.3, 1.4 and 1.8-fold, respectively) in the left striatum (Str). The AChE activity increased in left Str (after 30 min, 1.2-fold), decreased in right parietal cortex with repeated stress (to 0.5 × control). BChE activity decreased after 30 min in the right CA3 region (to 0.4 × control) but increased (3.8-fold) after 120 min in the left CA3 region. The pattern of changes in CRH-KO differed from that in WT mice.
- Klíčová slova
- Acetylcholinesterase, amygdala, butyrylcholinesterase, laterality, stress, striatum,
- MeSH
- acetylcholinesterasa metabolismus MeSH
- butyrylcholinesterasa metabolismus MeSH
- funkční lateralita fyziologie MeSH
- fyzické omezení MeSH
- fyziologický stres fyziologie MeSH
- hormon uvolňující kortikotropin genetika metabolismus MeSH
- mozek metabolismus MeSH
- myši knockoutované MeSH
- myši MeSH
- psychický stres metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- butyrylcholinesterasa MeSH
- hormon uvolňující kortikotropin MeSH
Being rooted in place, plants are faced with the challenge of responding to unfavourable local conditions. One such condition, heat stress, contributes massively to crop losses globally. Heatwaves are predicted to increase, and it is of vital importance to generate crops that are tolerant to not only heat stress but also to several other abiotic stresses (e.g. drought stress, salinity stress) to ensure that global food security is protected. A better understanding of the molecular mechanisms that underlie the temperature stress response in pollen will be a significant step towards developing effective breeding strategies for high and stable production in crop plants. While most studies have focused on the vegetative phase of plant growth to understand heat stress tolerance, it is the reproductive phase that requires more attention as it is more sensitive to elevated temperatures. Every phase of reproductive development is affected by environmental challenges, including pollen and ovule development, pollen tube growth, male-female cross-talk, fertilization, and embryo development. In this review we summarize how pollen is affected by heat stress and the molecular mechanisms employed during the stress period, as revealed by classical and -omics experiments.
- Klíčová slova
- heat stress (HS), heat stress response (HSR), multiomics, pollen development, thermotolerance,
- MeSH
- fyziologický stres MeSH
- pyl MeSH
- reakce na tepelný šok MeSH
- šlechtění rostlin * MeSH
- termotolerance * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Social defeat stress affects behavior and changes the expression of the genes underlying neuronal plasticity in the brain. The circadian clock regulates most neuronal processes in the brain, which results in daily variations of complex behavior, and any disturbance in circadian clock oscillations increases the risk of mood and cognitive disbalance. In this study, we assessed the effect of acute and repeated social defeat stress on Per2 and Nr1d1 expression in prefrontal cortexes, hippocampi, pineal glands, olfactory bulbs, cerebella, and pituitary glands. We also evaluated the effect of our experimental setting on levels of Bdnf and plasma corticosterone, two markers widely used to asses the impact of stress on mammalian physiology. Our data show that single and repeated social defeat stress upregulates the expression of both clock genes and Bdnf in all brain structures, and corticosterone in the blood. While the general pattern of Bdnf upregulation suggests higher sensitivity in the intruder group, the clock genes are induced more significantly in residents, especially by repeated stress sessions. Our work thus suggests that the model of stress-induced anxiety and depression should consider a group of residents because, for some parameters, they may respond more distinctively than intruders.LAY SUMMARYThe resident/intruder experimental paradigm affects the expression of clock genes Per2, Nr1d1and Bdnf in the brain structures and plasma corticosterone level. The induction of clock genes is evident in both experimental groups; however, it is more marked in residents. Together with the significant increase in Bdnf levels in the majority of brain structures and plasma corticosterone in residents, our data suggest that in the model of social defeat stress, the utility of an experimental group of residents could be contributive.
- Klíčová slova
- Clock genes, brain, brain-derived neurotrophic factor, corticosterone, rat, social defeat stress,
- MeSH
- kortikosteron MeSH
- krysa rodu Rattus MeSH
- mozek metabolismus MeSH
- mozkový neurotrofický faktor * genetika metabolismus MeSH
- potkani Wistar MeSH
- proteiny CLOCK * genetika metabolismus MeSH
- psychický stres * genetika MeSH
- sociální chování MeSH
- sociální porážka MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Bdnf protein, rat MeSH Prohlížeč
- Clock protein, rat MeSH Prohlížeč
- kortikosteron MeSH
- mozkový neurotrofický faktor * MeSH
- proteiny CLOCK * MeSH
- MeSH
- balneologie * MeSH
- dospělí MeSH
- duševní procesy * MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- psychický stres * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- anglický abstrakt MeSH
- časopisecké články MeSH
Several recent studies have shown that citric acid/citrate (CA) can confer abiotic stress tolerance to plants. Exogenous CA application leads to improved growth and yield in crop plants under various abiotic stress conditions. Improved physiological outcomes are associated with higher photosynthetic rates, reduced reactive oxygen species, and better osmoregulation. Application of CA also induces antioxidant defense systems, promotes increased chlorophyll content, and affects secondary metabolism to limit plant growth restrictions under stress. In particular, CA has a major impact on relieving heavy metal stress by promoting precipitation, chelation, and sequestration of metal ions. This review summarizes the mechanisms that mediate CA-regulated changes in plants, primarily CA's involvement in the control of physiological and molecular processes in plants under abiotic stress conditions. We also review genetic engineering strategies for CA-mediated abiotic stress tolerance. Finally, we propose a model to explain how CA's position in complex metabolic networks involving the biosynthesis of phytohormones, amino acids, signaling molecules, and other secondary metabolites could explain some of its abiotic stress-ameliorating properties. This review summarizes our current understanding of CA-mediated abiotic stress tolerance and highlights areas where additional research is needed.
- Klíčová slova
- aluminum toxicity, antioxidant, citrate, drought stress, heavy metal stress, reactive oxygen species, salinity,
- MeSH
- antioxidancia metabolismus farmakologie MeSH
- biologické modely MeSH
- fyziologická adaptace účinky léků MeSH
- fyziologický stres účinky léků genetika MeSH
- genetické inženýrství MeSH
- kyselina citronová metabolismus farmakologie MeSH
- metabolická inaktivace MeSH
- období sucha MeSH
- reakce na tepelný šok účinky léků MeSH
- reaktivní formy kyslíku metabolismus MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostliny účinky léků genetika metabolismus MeSH
- solný stres účinky léků MeSH
- těžké kovy farmakokinetika toxicita MeSH
- vývoj rostlin účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antioxidancia MeSH
- kyselina citronová MeSH
- reaktivní formy kyslíku MeSH
- regulátory růstu rostlin MeSH
- těžké kovy MeSH