Citric Acid-Mediated Abiotic Stress Tolerance in Plants

. 2021 Jul 05 ; 22 (13) : . [epub] 20210705

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34281289

Several recent studies have shown that citric acid/citrate (CA) can confer abiotic stress tolerance to plants. Exogenous CA application leads to improved growth and yield in crop plants under various abiotic stress conditions. Improved physiological outcomes are associated with higher photosynthetic rates, reduced reactive oxygen species, and better osmoregulation. Application of CA also induces antioxidant defense systems, promotes increased chlorophyll content, and affects secondary metabolism to limit plant growth restrictions under stress. In particular, CA has a major impact on relieving heavy metal stress by promoting precipitation, chelation, and sequestration of metal ions. This review summarizes the mechanisms that mediate CA-regulated changes in plants, primarily CA's involvement in the control of physiological and molecular processes in plants under abiotic stress conditions. We also review genetic engineering strategies for CA-mediated abiotic stress tolerance. Finally, we propose a model to explain how CA's position in complex metabolic networks involving the biosynthesis of phytohormones, amino acids, signaling molecules, and other secondary metabolites could explain some of its abiotic stress-ameliorating properties. This review summarizes our current understanding of CA-mediated abiotic stress tolerance and highlights areas where additional research is needed.

Zobrazit více v PubMed

Yadav S., Modi P., Dave A., Vijapura A., Patel D., Patel M. Effect of Abiotic Stress on Crops. In: Hasanuzzaman M., Filho M.C.M.T., Fujita M., Nogueira T.A.R., editors. Sustainable Crop Production. IntechOpen Publishing; 2020. [(accessed on 17 June 2020)]. Available online: https://www.intechopen.com/books/sustainable-crop-production/effect-of-abiotic-stress-on-crops.

Wang Y., Frei M. Stressed Food–The Impact of Abiotic Environmental Stresses on Crop Quality. Agric. Ecosyst. Environ. 2011;141:271–286. doi: 10.1016/j.agee.2011.03.017. DOI

Dos Reis S.P., Lima A.M., De Souza C.R.B. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress. Int. J. Mol. Sci. 2012;13:8628–8647. doi: 10.3390/ijms13078628. PubMed DOI PMC

Tuteja N., Sopory S.K. Chemical Signaling under Abiotic Stress Environment in Plants. Plant Signal. Behav. 2008;3:525–536. doi: 10.4161/psb.3.8.6186. PubMed DOI PMC

Gill S.S., Tuteja N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2010;48:909–930. doi: 10.1016/j.plaphy.2010.08.016. PubMed DOI

Trejo-Tellez L., Gomez-Merino F., Schmitt J. Citric Acid: Biosynthesis, Properties and Applications on Higher Plants. DA Vargas and JV Medina Nova Science Publishers, Inc.; New York, NY, USA: 2012. pp. 43–70.

Khatun M.R., Mukta R.H., Islam M.A., Huda A.N. Insight into Citric Acid-Induced Chromium Detoxification in Rice (Oryza Sativa. L) Int. J. Phytoremediat. 2019;21:1234–1240. doi: 10.1080/15226514.2019.1619162. PubMed DOI

Hussain S.B., Shi C.-Y., Guo L.-X., Kamran H.M., Sadka A., Liu Y.-Z. Recent Advances in the Regulation of Citric Acid Metabolism in Citrus Fruit. Crit. Rev. Plant Sci. 2017;36:241–256. doi: 10.1080/07352689.2017.1402850. DOI

Guo L.-X., Shi C.-Y., Liu X., Ning D.-Y., Jing L.-F., Yang H., Liu Y.-Z. Citrate Accumulation-Related Gene Expression and/or Enzyme Activity Analysis Combined with Metabolomics Provide a Novel Insight for an Orange Mutant. Sci. Rep. 2016;6:1–12. doi: 10.1038/srep29343. PubMed DOI PMC

Etienne A., Génard M., Lobit P., Mbeguié-A-Mbéguié D., Bugaud C. What Controls Fleshy Fruit Acidity? A Review of Malate and Citrate Accumulation in Fruit Cells. J. Exp. Bot. 2013;64:1451–1469. doi: 10.1093/jxb/ert035. PubMed DOI

Lopez-Bucio J., de la Vega O.M., Guevara-Garcia A., Herrera-Estrella L. Enhanced Phosphorus Uptake in Transgenic Tobacco Plants That Overproduce Citrate. Nat. Biotechnol. 2000;18:450–453. doi: 10.1038/74531. PubMed DOI

Eidyan B., Hadavi E., Moalemi N. Pre-Harvest Foliar Application of Iron Sulfate and Citric Acid Combined with Urea Fertigation Affects Growth and Vase Life of Tuberose (Polianthes Tuberosa L.) ‘Por-Par’. Hortic. Environ. Biotechnol. 2014;55:9–13. doi: 10.1007/s13580-014-0061-2. DOI

Darandeh N., Hadavi E. Effect of Pre-Harvest Foliar Application of Citric Acid and Malic Acid on Chlorophyll Content and Post-Harvest Vase Life of Lilium Cv. Brunello. Front. Plant Sci. 2012;2:106. doi: 10.3389/fpls.2011.00106. PubMed DOI PMC

El-Tohamy W., El-Abagy H., Badr M., Gruda N. Drought Tolerance and Water Status of Bean Plants (Phaseolus Vulgaris L.) as Affected by Citric Acid Application. J. Appl. Bot. Food Qual. 2013;86 doi: 10.5073/JABFQ.2013.086.029. DOI

Gebaly S.G., Ahmed F.M., Namich A.A. Effect of Spraying Some Organic, Amino Acids and Potassium Citrate on Alleviation of Drought Stress in Cotton Plant. J. Plant Prod. 2013;4:1369–1381. doi: 10.21608/jpp.2013.74149. DOI

Ehsan S., Ali S., Noureen S., Mahmood K., Farid M., Ishaque W., Shakoor M.B., Rizwan M. Citric Acid Assisted Phytoremediation of Cadmium by Brassica Napus L. Ecotoxicol. Environ. Saf. 2014;106:164–172. doi: 10.1016/j.ecoenv.2014.03.007. PubMed DOI

Hu L., Zhang Z., Xiang Z., Yang Z. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium Arundinaceum) Front. Plant Sci. 2016;7:179. doi: 10.3389/fpls.2016.00179. PubMed DOI PMC

El-Beltagi H.S., Ahmed S.H., Namich A.A.M., Abdel-Sattar R.R. Effect of Salicylic Acid and Potassium Citrate on Cotton Plant under Salt Stress. Fresen. Environ. Bull. 2017;26:1091–1100.

Shi D., Sheng Y. Effect of Various Salt–Alkaline Mixed Stress Conditions on Sunflower Seedlings and Analysis of Their Stress Factors. Environ. Exp. Bot. 2005;54:8–21. doi: 10.1016/j.envexpbot.2004.05.003. DOI

Abbas G., Saqib M., Akhtar J., Murtaza G., Shahid M. Effect of Salinity on Rhizosphere Acidification and Antioxidant Activity of Two Acacia Species. Can. J. For. Res. 2015;45:124–129. doi: 10.1139/cjfr-2014-0354. DOI

Kang S.-M., Shahzad R., Bilal S., Khan A.L., Park Y.-G., Lee K.-E., Asaf S., Khan M.A., Lee I.-J. Indole-3-Acetic-Acid and ACC Deaminase Producing Leclercia Adecarboxylata MO1 Improves Solanum Lycopersicum L. Growth and Salinity Stress Tolerance by Endogenous Secondary Metabolites Regulation. BMC Microbiol. 2019;19:1–14. doi: 10.1186/s12866-019-1450-6. PubMed DOI PMC

Mickky B.M., Abbas M.A., Sameh N.M. Morpho-Physiological Status of Fenugreek Seedlings under NaCl Stress. J. King Saud Univ. Sci. 2019;31:1276–1282. doi: 10.1016/j.jksus.2019.02.005. DOI

Timpa J.D., Burke J.J., Quisenberry J.E., Wendt C.W. Effects of Water Stress on the Organic Acid and Carbohydrate Compositions of Cotton Plants. Plant Physiol. 1986;82:724–728. doi: 10.1104/pp.82.3.724. PubMed DOI PMC

Franco A., Ball E., Lüttge U. Differential Effects of Drought and Light Levels on Accumulation of Citric and Malic Acids during CAM in Clusia. Plant Cell Environ. 1992;15:821–829. doi: 10.1111/j.1365-3040.1992.tb02149.x. DOI

Herppich W., Peckmann K. Responses of Gas Exchange, Photosynthesis, Nocturnal Acid Accumulation and Water Relations of Aptenia Cordifolia to Short-Term Drought and Rewatering. J. Plant Physiol. 1997;150:467–474. doi: 10.1016/S0176-1617(97)80100-9. DOI

Bethke P.C., Sabba R., Bussan A.J. Tuber Water and Pressure Potentials Decrease and Sucrose Contents Increase in Response to Moderate Drought and Heat Stress. Am. J. Potato Res. 2009;86:519–532. doi: 10.1007/s12230-009-9109-8. DOI

Nahar K., Ullah S.M. Drought Stress Effects on Plant Water Relations, Growth, Fruit Quality and Osmotic Adjustment of Tomato (Solanum Lycopersicum) under Subtropical Condition. Asian J. Agric. Hortic. Res. 2018:1–14. doi: 10.9734/AJAHR/2018/39824. DOI

Du H., Wang Z., Yu W., Liu Y., Huang B. Differential Metabolic Responses of Perennial Grass Cynodon Transvaalensis× Cynodon Dactylon (C4) and Poa Pratensis (C3) to Heat Stress. Physiol. Plant. 2011;141:251–264. doi: 10.1111/j.1399-3054.2010.01432.x. PubMed DOI

Yu J., Du H., Xu M., Huang B. Metabolic Responses to Heat Stress under Elevated Atmospheric CO2 Concentration in a Cool-Season Grass Species. J. Am. Soc. Hortic. Sci. 2012;137:221–228. doi: 10.21273/JASHS.137.4.221. DOI

Xu J., Zhu Y., Ge Q., Li Y., Sun J., Zhang Y., Liu X. Comparative Physiological Responses of Solanum Nigrum and Solanum Torvum to Cadmium Stress. New Phytol. 2012;196:125–138. doi: 10.1111/j.1469-8137.2012.04236.x. PubMed DOI

Mnasri M., Ghabriche R., Fourati E., Zaier H., Sabally K., Barrington S., Lutts S., Abdelly C., Ghnaya T. Cd and Ni Transport and Accumulation in the Halophyte Sesuvium Portulacastrum: Implication of Organic Acids in These Processes. Front. Plant Sci. 2015;6:156. doi: 10.3389/fpls.2015.00156. PubMed DOI PMC

Pietrini F., Iori V., Cheremisina A., Shevyakova N.I., Radyukina N., Kuznetsov V.V., Zacchini M. Evaluation of Nickel Tolerance in Amaranthus Paniculatus L. Plants by Measuring Photosynthesis, Oxidative Status, Antioxidative Response and Metal-Binding Molecule Content. Environ. Sci. Pollut. Res. 2015;22:482–494. doi: 10.1007/s11356-014-3349-y. PubMed DOI

Kaur R., Yadav P., Thukral A.K., Sharma A., Bhardwaj R., Alyemeni M.N., Wijaya L., Ahmad P. Castasterone and Citric Acid Supplementation Alleviates Cadmium Toxicity by Modifying Antioxidants and Organic Acids in Brassica Juncea. J. Plant Growth Regul. 2018;37:286–299. doi: 10.1007/s00344-017-9727-1. DOI

Zeng F., Chen S., Miao Y., Wu F., Zhang G. Changes of Organic Acid Exudation and Rhizosphere PH in Rice Plants under Chromium Stress. Environ. Pollut. 2008;155:284–289. doi: 10.1016/j.envpol.2007.11.019. PubMed DOI

Ma J.F., Zheng S.J., Matsumoto H. Specific Secretion of Citric Acid Induced by Al Stress in Cassia Tora L. Plant Cell Physiol. 1997;38:1019–1025. doi: 10.1093/oxfordjournals.pcp.a029266. DOI

Ishikawa S., Wagatsuma T., Sasaki R., Ofei-Manu P. Comparison of the Amount of Citric and Malic Acids in Al Media of Seven Plant Species and Two Cultivars Each in Five Plant Species. Soil Sci. Plant Nutr. 2000;46:751–758. doi: 10.1080/00380768.2000.10409141. DOI

Li X.F., Ma J.F., Matsumoto H. Pattern of Aluminum-Induced Secretion of Organic Acids Differs between Rye and Wheat. Plant Physiol. 2000;123:1537–1544. doi: 10.1104/pp.123.4.1537. PubMed DOI PMC

Li X.F., Ma J.F., Matsumoto H. Aluminum-Induced Secretion of Both Citrate and Malate in Rye. Plant Soil. 2002;242:235–243.

Kidd P., Llugany M., Poschenrieder C., Gunse B., Barcelo J. The Role of Root Exudates in Aluminium Resistance and Silicon-induced Amelioration of Aluminium Toxicity in Three Varieties of Maize (Zea Mays L.) J. Exp. Bot. 2001;52:1339–1352. PubMed

Farid M., Ali S., Saeed R., Rizwan M., Bukhari S.A.H., Abbasi G.H., Hussain A., Ali B., Zamir M.S.I., Ahmad I. Combined Application of Citric Acid and 5-Aminolevulinic Acid Improved Biomass, Photosynthesis and Gas Exchange Attributes of Sunflower (Helianthus Annuus L.) Grown on Chromium Contaminated Soil. Int. J. Phytoremediat. 2019;21:760–767. doi: 10.1080/15226514.2018.1556595. PubMed DOI

Tahjib-Ul-Arif M., Al Mamun Sohag A., Mostofa M.G., Polash M.A.S., Mahamud A.S.U., Afrin S., Hossain A., Hossain M.A., Murata Y., Phan Tran L. Comparative Effects of Ascobin and Glutathione on Copper Homeostasis and Oxidative Stress Metabolism in Mitigation of Copper Toxicity in Rice. Plant Biol. 2020 doi: 10.1111/plb.13222. PubMed DOI

Zanotti R.F., Lopes J.C., Motta L.B., de Freitas A.R., Mengarda L.H.G. Tolerance Induction to Saline Stress in Papaya Seeds Treated with Potassium Nitrate and Sildenafil Citrate. Semin. Ciências Agrárias. 2013;1:3669–3673. doi: 10.5433/1679-0359.2013v34n6Supl1p3669. DOI

El-Hawary M., Nashed M.E. Effect of Foliar Application by Some Antioxidants on Growth and Productivity of Maize under Saline Soil Conditions. J. Plant Prod. 2019;10:93–99. doi: 10.21608/jpp.2019.36238. DOI

Ahmed A., Talaat I., Khalid K. Citric Acid Affects Melissa Officinalis L. Essential Oil under Saline Soil. Asian J. Crop. Sci. 2017;9:40–49. doi: 10.3923/ajcs.2017.40.49. DOI

Abdellatif Y., Ibrahim M. Non-Enzymatic Anti-Oxidants Potential in Enhancing Hibiscus Sabdariffa L. Tolerance to Oxidative Stress. Int. J. Bot. 2018;14:43–58.

Sun Y.-L., Hong S.-K. Effects of Citric Acid as an Important Component of the Responses to Saline and Alkaline Stress in the Halophyte Leymus Chinensis (Trin.) Plant Growth Regul. 2011;64:129–139. doi: 10.1007/s10725-010-9547-9. DOI

Ahmed S., Abdel-Razek M., Hafez W., Aziz A.E. Environmental Impacts of Some Organic Extracts on Sugar Beet Yield under Saline-Sodic Soil Conditions. J. Soil Sci. Agric. Eng. 2017;8:821–827. doi: 10.21608/jssae.2017.38398. DOI

Levi A., Paterson A.H., Cakmak I., Saranga Y. Metabolite and Mineral Analyses of Cotton Near-isogenic Lines Introgressed with QTLs for Productivity and Drought-related Traits. Physiol. Plant. 2011;141:265–275. doi: 10.1111/j.1399-3054.2010.01438.x. PubMed DOI

Miyazawa K. Drought Stress Alleviation of Cabbage Seedlings by Citric Acid Application; Proceedings of the XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014); Brisbane, QLD, Australia. 17 August 2014.

El-Desouky S., Ismaeil F., Wanas A., Fathy E., AbdEl-All M., Abd M. Effect of Yeast Extract, Amino Acids and Citric Acid on Physioanatomical Aspects and Productivity of Tomato Plants Grown in Late Summer Season. Minufiya J. Agric. Res. 2011;36:859–884.

Zhang L., Livingstone J., Tarui Y., Hirasawa E. Effects of Citric Acid, Sucrose, and Proton Concentration in Suppressing Defoliation in Hibiscus Plants Grown under Low-Illumination Conditions. HortTechnology. 2009;19:305–308. doi: 10.21273/HORTSCI.19.2.305. DOI

Gong F., Fan W. Effects of Exogenous Citric Acids on Nutrient Activation of Calcareous Yellow Soil and Promotion Effects of Nutrient Absorption and Growth of Rosa Roxburghii Seedlings. Sci. Agric. Sin. 2018;51:2164–2177.

Al Mahmud J., Hasanuzzaman M., Nahar K., Bhuyan M.B., Fujita M. Insights into Citric Acid-Induced Cadmium Tolerance and Phytoremediation in Brassica Juncea L.: Coordinated Functions of Metal Chelation, Antioxidant Defense and Glyoxalase Systems. Ecotoxicol. Environ. Saf. 2018;147:990–1001. doi: 10.1016/j.ecoenv.2017.09.045. PubMed DOI

Song J., Markewitz D., Wu S., Sang Y., Duan C., Cui X. Exogenous Oxalic Acid and Citric Acid Improve Lead (Pb) Tolerance of Larix Olgensis A. Henry Seedlings. Forests. 2018;9:510. doi: 10.3390/f9090510. DOI

Chen H.-C., Zhang S.-L., Wu K.-J., Li R., He X.-R., He D.-N., Huang C., Wei H. The Effects of Exogenous Organic Acids on the Growth, Photosynthesis and Cellular Ultrastructure of Salix Variegata Franch. Under Cd Stress. Ecotoxicol. Environ. Saf. 2020;187:109790. doi: 10.1016/j.ecoenv.2019.109790. PubMed DOI

Zaheer I.E., Ali S., Rizwan M., Farid M., Shakoor M.B., Gill R.A., Najeeb U., Iqbal N., Ahmad R. Citric Acid Assisted Phytoremediation of Copper by Brassica Napus L. Ecotoxicol. Environ. Saf. 2015;120:310–317. doi: 10.1016/j.ecoenv.2015.06.020. PubMed DOI

Shakoor M.B., Ali S., Hameed A., Farid M., Hussain S., Yasmeen T., Najeeb U., Bharwana S.A., Abbasi G.H. Citric Acid Improves Lead (Pb) Phytoextraction in Brassica Napus L. by Mitigating Pb-Induced Morphological and Biochemical Damages. Ecotoxicol. Environ. Saf. 2014;109:38–47. doi: 10.1016/j.ecoenv.2014.07.033. PubMed DOI

Afshan S., Ali S., Bharwana S.A., Rizwan M., Farid M., Abbas F., Ibrahim M., Mehmood M.A., Abbasi G.H. Citric Acid Enhances the Phytoextraction of Chromium, Plant Growth, and Photosynthesis by Alleviating the Oxidative Damages in Brassica Napus L. Environ. Sci. Pollut. Res. 2015;22:11679–11689. doi: 10.1007/s11356-015-4396-8. PubMed DOI

Farid M., Ali S., Rizwan M., Ali Q., Abbas F., Bukhari S.A.H., Saeed R., Wu L. Citric Acid Assisted Phytoextraction of Chromium by Sunflower; Morpho-Physiological and Biochemical Alterations in Plants. Ecotoxicol. Environ. Saf. 2017;145:90–102. doi: 10.1016/j.ecoenv.2017.07.016. PubMed DOI

Sebastian A., Prasad M. Exogenous Citrate and Malate Alleviate Cadmium Stress in Oryza Sativa L.: Probing Role of Cadmium Localization and Iron Nutrition. Ecotoxicol. Environ. Saf. 2018;166:215–222. doi: 10.1016/j.ecoenv.2018.09.084. PubMed DOI

Faraz A., Faizan M., Sami F., Siddiqui H., Hayat S. Supplementation of Salicylic Acid and Citric Acid for Alleviation of Cadmium Toxicity to Brassica Juncea. J. Plant Growth Regul. 2020;39:641–655. doi: 10.1007/s00344-019-10007-0. DOI

Hassan M., Dagari M., Muazu A., Sanusi K. Effect of Citric Acid on Cadmium Ion Uptake and Morphological Parameters of Hydroponically Grown Jute Mallow (Corchorus Olitorius) Int. J. Chem. Mater. Environ. Res. 2016;3:14–19.

Anwer S., Ashraf M.Y., Hussain M., Ashraf M., Jamil A. Citric Acid Mediated Phytoextraction of Cadmium by Maize (Zea Mays L.) Pak. J. Bot. 2012;44:1831–1836.

Sun Q., Wang X., Ding S., Yuan X. Effects of Exogenous Organic Chelators on Phytochelatins Production and Its Relationship with Cadmium Toxicity in Wheat (Triticum Aestivum L.) under Cadmium Stress. Chemosphere. 2005;60:22–31. doi: 10.1016/j.chemosphere.2004.10.068. PubMed DOI

Qiu R., Liu W., Zeng X., Tang Y., Brewer E., Fang X. Effects of Exogenous Citric Acid and Malic Acid Addition on Nickel Uptake and Translocation in Leaf Mustard (Brassica Juncea Var. Foliosa Bailey) and Alyssum Corsicum. Int. J. Environ. Pollut. 2009;38:15–25. doi: 10.1504/IJEP.2009.026639. DOI

Irtelli B., Navari-Izzo F. Influence of Sodium Nitrilotriacetate (NTA) and Citric Acid on Phenolic and Organic Acids in Brassica Juncea Grown in Excess of Cadmium. Chemosphere. 2006;65:1348–1354. doi: 10.1016/j.chemosphere.2006.04.014. PubMed DOI

Ben Massoud M., Karmous I., El Ferjani E., Chaoui A. Alleviation of Copper Toxicity in Germinating Pea Seeds by IAA, GA3, Ca and Citric Acid. J. Plant Interact. 2018;13:21–29. doi: 10.1080/17429145.2017.1410733. DOI

Kaur R., Yadav P., Sharma A., Thukral A.K., Kumar V., Kohli S.K., Bhardwaj R. Castasterone and Citric Acid Treatment Restores Photosynthetic Attributes in Brassica Juncea L. under Cd (II) Toxicity. Ecotoxicol. Environ. Saf. 2017;145:466–475. doi: 10.1016/j.ecoenv.2017.07.067. PubMed DOI

Kumar A., Pal L., Agrawal V. Glutathione and Citric Acid Modulates Lead-and Arsenic-Induced Phytotoxicity and Genotoxicity Responses in Two Cultivars of Solanum Lycopersicum L. Acta Physiol. Plant. 2017;39:1–12. doi: 10.1007/s11738-017-2448-z. DOI

Gao Y., Miao C., Mao L., Zhou P., Jin Z., Shi W. Improvement of Phytoextraction and Antioxidative Defense in Solanum Nigrum L. under Cadmium Stress by Application of Cadmium-Resistant Strain and Citric Acid. J. Hazard. Mater. 2010;181:771–777. doi: 10.1016/j.jhazmat.2010.05.080. PubMed DOI

Najeeb U., Xu L., Ali S., Jilani G., Gong H., Shen W., Zhou W. Citric Acid Enhances the Phytoextraction of Manganese and Plant Growth by Alleviating the Ultrastructural Damages in Juncus Effusus L. J. Hazard. Mater. 2009;170:1156–1163. doi: 10.1016/j.jhazmat.2009.05.084. PubMed DOI

Amir W., Farid M., Ishaq H.K., Farid S., Zubair M., Alharby H.F., Bamagoos A.A., Rizwan M., Raza N., Hakeem K.R. Accumulation Potential and Tolerance Response of Typha Latifolia L. under Citric Acid Assisted Phytoextraction of Lead and Mercury. Chemosphere. 2020;257:127247. doi: 10.1016/j.chemosphere.2020.127247. PubMed DOI

Shahid M., Dumat C., Pourrut B., Silvestre J., Laplanche C., Pinelli E. Influence of EDTA and Citric Acid on Lead-Induced Oxidative Stress to Vicia Faba Roots. J. Soils Sediments. 2014;14:835–843. doi: 10.1007/s11368-013-0724-0. DOI

Lu L., Tian S., Yang X., Peng H., Li T. Improved Cadmium Uptake and Accumulation in the Hyperaccumulator Sedum Alfredii: The Impact of Citric Acid and Tartaric Acid. J. Zhejiang Univ. Sci. B. 2013;14:106–114. doi: 10.1631/jzus.B1200211. PubMed DOI PMC

An Y., Zhou P., Xiao Q., Shi D. Effects of Foliar Application of Organic Acids on Alleviation of Aluminum Toxicity in Alfalfa. J. Plant Nutr. Soil Sci. 2014;177:421–430. doi: 10.1002/jpln.201200445. DOI

Hall J.L. Cellular Mechanisms for Heavy Metal Detoxification and Tolerance. J. Exp. Bot. 2002;53:1–11. doi: 10.1093/jexbot/53.366.1. PubMed DOI

Ghori N.H., Ghori T., Hayat M.Q., Imadi S.R., Gul A., Altay V., Ozturk M. Heavy Metal Stress and Responses in Plants. Int. J. Environ. Sci. Technol. 2019;16:1807–1828. doi: 10.1007/s13762-019-02215-8. DOI

Dresler S., Hanaka A., Bednarek W., Maksymiec W. Accumulation of Low-Molecular-Weight Organic Acids in Roots and Leaf Segments of Zea Mays Plants Treated with Cadmium and Copper. Acta Physiol. Plant. 2014;36:1565–1575. doi: 10.1007/s11738-014-1532-x. DOI

Sazanova K., Osmolovskaya N., Schiparev S., Yakkonen K., Kuchaeva L., Vlasov D. Organic Acids Induce Tolerance to Zinc-and Copper-Exposed Fungi under Various Growth Conditions. Curr. Microbiol. 2015;70:520–527. doi: 10.1007/s00284-014-0751-0. PubMed DOI

Yu G., Ma J., Jiang P., Li J., Gao J., Qiao S., Zhao Z. The Mechanism of Plant Resistance to Heavy Metal. IOP Conf. Ser. Earth Environ. Sci. 2019;310:052004. doi: 10.1088/1755-1315/310/5/052004. DOI

DalCorso G., Farinati S., Furini A. Regulatory Networks of Cadmium Stress in Plants. Plant Signal. Behav. 2010;5:663–667. doi: 10.4161/psb.5.6.11425. PubMed DOI PMC

Martinoia E. Vacuolar Transporters–Companions on a Longtime Journey. Plant Physiol. 2018;176:1384–1407. doi: 10.1104/pp.17.01481. PubMed DOI PMC

Vatansever R., Ozyigit I.I., Filiz E. Essential and Beneficial Trace Elements in Plants, and Their Transport in Roots: A Review. Appl. Biochem. Biotechnol. 2017;181:464–482. doi: 10.1007/s12010-016-2224-3. PubMed DOI

Salt D., Kato N., Kramer U., Smith R., Raskin I. The Role of Root Exudates in Nickel Hyperaccumulation and Tolerance in Accumulator and Non Accumulator Species of Thlaspi. In: Terry N., Banuelos G., editors. Phytoremediation of Contaminated Soil and Water. CRC Press; Boca Raton, FL, USA: 2000. pp. 189–200.

Ma J.F., Hiradate S. Form of Aluminium for Uptake and Translocation in Buckwheat (Fagopyrum Esculentum Moench) Planta. 2000;211:355–360. doi: 10.1007/s004250000292. PubMed DOI

Yang Z.M., Sivaguru M., Horst W.J., Matsumoto H. Aluminium Tolerance Is Achieved by Exudation of Citric Acid from Roots of Soybean (Glycine Max) Physiol. Plant. 2000;110:72–77. doi: 10.1034/j.1399-3054.2000.110110.x. DOI

De Noronha A.L.O., Guimaraes L., Duarte H.A. Structural and Thermodynamic Analysis of the First Mononuclear Aqueous Aluminum Citrate Complex Using DFT Calculations. J. Chem. Theory Comput. 2007;3:930–937. doi: 10.1021/ct700016f. PubMed DOI

Javed M.T., Stoltz E., Lindberg S., Greger M. Changes in PH and Organic Acids in Mucilage of Eriophorum Angustifolium Roots after Exposure to Elevated Concentrations of Toxic Elements. Environ. Sci. Pollut. Res. 2013;20:1876–1880. doi: 10.1007/s11356-012-1413-z. PubMed DOI

Seshadri B., Bolan N., Naidu R. Rhizosphere-Induced Heavy Metal (Loid) Transformation in Relation to Bioavailability and Remediation. J. Soil Sci. Plant Nutr. 2015;15:524–548. doi: 10.4067/S0718-95162015005000043. DOI

Mariano E.D., Jorge R.A., Keltjens W.G., Menossi M. Metabolism and Root Exudation of Organic Acid Anions under Aluminium Stress. Braz. J. Plant Physiol. 2005;17:157–172. doi: 10.1590/S1677-04202005000100013. DOI

Sharma S.S., Dietz K., Mimura T. Vacuolar Compartmentalization as Indispensable Component of Heavy Metal Detoxification in Plants. Plant Cell Environ. 2016;39:1112–1126. doi: 10.1111/pce.12706. PubMed DOI

Manara A. Plants and Heavy Metals. Springer; Dordrecht, The Netherlands: 2012. Plant Responses to Heavy Metal Toxicity; pp. 27–53.

Yeh T., Lin C., Chuang C., Pan C. The Effect of Varying Soil Organic Levels on Phytoextraction of Cu and Zn Uptake, Enhanced by Chelator EDTA, DTPA, EDDS and Citric Acid. J. Environ. Anal. Toxicol. 2012;2:2. doi: 10.4172/2161-0525.1000142. DOI

Dumont S., Rivoal J. Consequences of Oxidative Stress on Plant Glycolytic and Respiratory Metabolism. Front. Plant Sci. 2019;10:166. doi: 10.3389/fpls.2019.00166. PubMed DOI PMC

Jagtap V., Bhargava S. Variation in the Antioxidant Metabolism of Drought Tolerantand Drought Susceptible Varieties of Sorghum Bicolor (L.) Moench. Exposed to High Light, Low Water and High Temperature Stress. J. Plant Physiol. 1995;145:195–197. doi: 10.1016/S0176-1617(11)81872-9. DOI

Gong M., Chen S.-N., Song Y.-Q., Li Z.-G. Effect of Calcium and Calmodulin on Intrinsic Heat Tolerance in Relation to Antioxidant Systems in Maize Seedlings. Funct. Plant Biol. 1997;24:371–379. doi: 10.1071/PP96118. DOI

Kordrostami M., Rabiei B., Ebadi A. Handbook of Plant and Crop Stress. CRC Press; Boca Raton, FL, USA: 2019. Oxidative Stress in Plants: Production, Metabolism, and Biological Roles of Reactive Oxygen Species; pp. 85–92.

Mittler R. Oxidative Stress, Antioxidants and Stress Tolerance. Trends Plant Sci. 2002;7:405–410. doi: 10.1016/S1360-1385(02)02312-9. PubMed DOI

Gupta K.J., Shah J.K., Brotman Y., Jahnke K., Willmitzer L., Kaiser W.M., Bauwe H., Igamberdiev A.U. Inhibition of Aconitase by Nitric Oxide Leads to Induction of the Alternative Oxidase and to a Shift of Metabolism towards Biosynthesis of Amino Acids. J. Exp. Bot. 2012;63:1773–1784. doi: 10.1093/jxb/ers053. PubMed DOI

Demidchik V. Mechanisms of Oxidative Stress in Plants: From Classical Chemistry to Cell Biology. Environ. Exp. Bot. 2015;109:212–228. doi: 10.1016/j.envexpbot.2014.06.021. DOI

Preciado-Rangel P., Gaucín-Delgado J.M., Salas-Pérez L., Chavez E.S., Mendoza-Vllarreal R., Ortiz J.C.R. The Effect of Citric Acid on the Phenolic Compounds, Flavonoids and Antioxidant Capacity of Wheat Sprouts. Rev. Fac. Cienc. Agrar. UNCuyo. 2018;50:119–127.

Salas-Pérez L., Gaucín Delgado J., Preciado-Rangel P., Gonzales Fuentes J., Ayala Garay A., Segura Castruita M. The Application of Citric Acid Increases the Quality and Antioxidant Capacity of Lentil Sprouts. Rev. Mex. Cienc. Agrícolas. 2018;9:4301–4309.

Mallhi Z.I., Rizwan M., Mansha A., Ali Q., Asim S., Ali S., Hussain A., Alrokayan S.H., Khan H.A., Alam P. Citric Acid Enhances Plant Growth, Photosynthesis, and Phytoextraction of Lead by Alleviating the Oxidative Stress in Castor Beans. Plants. 2019;8:525. doi: 10.3390/plants8110525. PubMed DOI PMC

Pérez-Balibrea S., Moreno D.A., García-Viguera C. Influence of Light on Health-promoting Phytochemicals of Broccoli Sprouts. J. Sci. Food Agric. 2008;88:904–910. doi: 10.1002/jsfa.3169. DOI

Zhao Z., Hu L., Hu T., Fu J. Differential Metabolic Responses of Two Tall Fescue Genotypes to Heat Stress. Acta Prataculturae Sin. 2015;24:58–69.

Maxwell D.P., Wang Y., McIntosh L. The Alternative Oxidase Lowers Mitochondrial Reactive Oxygen Production in Plant Cells. Proc. Natl. Acad. Sci. USA. 1999;96:8271–8276. doi: 10.1073/pnas.96.14.8271. PubMed DOI PMC

Kumari A., Pathak P.K., Bulle M., Igamberdiev A.U., Gupta K.J. Alternative Oxidase Is an Important Player in the Regulation of Nitric Oxide Levels under Normoxic and Hypoxic Conditions in Plants. J. Exp. Bot. 2019;70:4345–4354. doi: 10.1093/jxb/erz160. PubMed DOI

Naikoo M.I., Dar M.I., Raghib F., Jaleel H., Ahmad B., Raina A., Khan F.A., Naushin F. Role and Regulation of Plants Phenolics in Abiotic Stress Tolerance: An Overview. Plant Signal. Mol. 2019:157–168.

Sharma A., Shahzad B., Kumar V., Kohli S.K., Sidhu G.P.S., Bali A.S., Handa N., Kapoor D., Bhardwaj R., Zheng B. Phytohormones Regulate Accumulation of Osmolytes under Abiotic Stress. Biomolecules. 2019;9:285. doi: 10.3390/biom9070285. PubMed DOI PMC

Chalker-Scott L. Do Anthocyanins Function as Osmoregulators in Leaf Tissues? Adv. Bot. Res. 2002;37:103–106.

Wahid A., Ghazanfar A. Possible Involvement of Some Secondary Metabolites in Salt Tolerance of Sugarcane. J. Plant Physiol. 2006;163:723–730. doi: 10.1016/j.jplph.2005.07.007. PubMed DOI

Reynoso-Camacho R., Ramos-Gomez M., Loarca-Pina G. Advances in Agricultural and Food Biotechnology. Bioactive Components in Common Beans (Phaseolus Vulgaris L.) Research Signpost; Trivandrum, India: 2006. pp. 217–236.

Li W., Zhang J., Tan S., Zheng Q., Zhao X., Gao X., Lu Y. Citric Acid-enhanced Dissolution of Polyphenols during Soaking of Different Teas. J. Food Biochem. 2019;43:e13046. doi: 10.1111/jfbc.13046. PubMed DOI

Szabados L., Savouré A. Proline: A Multifunctional Amino Acid. Trends Plant Sci. 2010;15:89–97. doi: 10.1016/j.tplants.2009.11.009. PubMed DOI

Kavi Kishor P.B., Hima Kumari P., Sunita M., Sreenivasulu N. Role of Proline in Cell Wall Synthesis and Plant Development and Its Implications in Plant Ontogeny. Front. Plant Sci. 2015;6:544. doi: 10.3389/fpls.2015.00544. PubMed DOI PMC

Yıldırım E., Dursun A. Effect of Foliar Salicylic Acid Applications on Plant Growth and Yield of Tomato under Greenhouse Conditions; Proceedings of the International Symposium on Strategies Towards Sustainability of Protected Cultivation in Mild Winter Climate; Antalya, Turkey. 6–11 April 2008; pp. 395–400.

Ulloa J., Aguilar-Pusian J., Rosas-Ulloa P., Galavíz-Ortíz K.M.d.C., Ulloa-Rangel B. Effect of Soaking Conditions with Citric Acid, Ascorbic Acid and Potassium Sorbate on the Physicochemical and Microbiological Quality of Minimally Processed Jackfruit. CyTA-J. Food. 2010;8:193–199. doi: 10.1080/19476330903348791. DOI

Limón R.I., Peñas E., Torino M.I., Martínez-Villaluenga C., Dueñas M., Frias J. Fermentation Enhances the Content of Bioactive Compounds in Kidney Bean Extracts. Food Chem. 2015;172:343–352. doi: 10.1016/j.foodchem.2014.09.084. PubMed DOI

Markakis P., Jurd L. Anthocyanins and Their Stability in Foods. Crit. Rev. Food Sci. Nutr. 1974;4:437–456. doi: 10.1080/10408397409527165. DOI

De la Fuente J.M., Ramírez-Rodríguez V., Cabrera-Ponce J.L., Herrera-Estrella L. Aluminum Tolerance in Transgenic Plants by Alteration of Citrate Synthesis. Science. 1997;276:1566–1568. doi: 10.1126/science.276.5318.1566. PubMed DOI

Koyama H., Kawamura A., Kihara T., Hara T., Takita E., Shibata D. Overexpression of Mitochondrial Citrate Synthase in Arabidopsis Thaliana Improved Growth on a Phosphorus-Limited Soil. Plant Cell Physiol. 2000;41:1030–1037. doi: 10.1093/pcp/pcd029. PubMed DOI

Guerinot M.L. Improving Rice Yields—Ironing out the Details. Nat. Biotechnol. 2001;19:417–418. doi: 10.1038/88067. PubMed DOI

Han D., Wang L., Wang Y., Yang G., Gao C., Yu Z., Li T., Zhang X., Ma L., Xu X. Overexpression of Malus Xiaojinensis CS1 Gene in Tobacco Affects Plant Development and Increases Iron Stress Tolerance. Sci. Hortic. 2013;150:65–72. doi: 10.1016/j.scienta.2012.10.004. DOI

Delhaize E., Hebb D.M., Ryan P.R. Expression of a Pseudomonas Aeruginosa Citrate Synthase Gene in Tobacco Is Not Associated with Either Enhanced Citrate Accumulation or Efflux. Plant Physiol. 2001;125:2059–2067. doi: 10.1104/pp.125.4.2059. PubMed DOI PMC

Anoop V.M., Basu U., McCammon M.T., McAlister-Henn L., Taylor G.J. Modulation of Citrate Metabolism Alters Aluminum Tolerance in Yeast and Transgenic Canola Overexpressing a Mitochondrial Citrate Synthase. Plant Physiol. 2003;132:2205–2217. doi: 10.1104/pp.103.023903. PubMed DOI PMC

Kruse A., Fieuw S., Heineke D., Müller-Röber B. Antisense Inhibition of Cytosolic NADP-Dependent Isocitrate Dehydrogenase in Transgenic Potato Plants. Planta. 1998;205:82–91. doi: 10.1007/s004250050299. DOI

Diatloff E., Roberts M., Sanders D., Roberts S.K. Characterization of Anion Channels in the Plasma Membrane of Arabidopsis Epidermal Root Cells and the Identification of a Citrate-Permeable Channel Induced by Phosphate Starvation. Plant Physiol. 2004;136:4136–4149. doi: 10.1104/pp.104.046995. PubMed DOI PMC

Yamaguchi M., Sasaki T., Sivaguru M., Yamamoto Y., Osawa H., Ahn S.J., Matsumoto H. Evidence for the Plasma Membrane Localization of Al-Activated Malate Transporter (ALMT1) Plant Cell Physiol. 2005;46:812–816. doi: 10.1093/pcp/pci083. PubMed DOI

Wu X., Li R., Shi J., Wang J., Sun Q., Zhang H., Xing Y., Qi Y., Zhang N., Guo Y.-D. Brassica Oleracea MATE Encodes a Citrate Transporter and Enhances Aluminum Tolerance in Arabidopsis Thaliana. Plant Cell Physiol. 2014;55:1426–1436. doi: 10.1093/pcp/pcu067. PubMed DOI

Lei G.J., Yokosho K., Yamaji N., Ma J.F. Two MATE Transporters with Different Subcellular Localization Are Involved in Al Tolerance in Buckwheat. Plant Cell Physiol. 2017;58:2179–2189. doi: 10.1093/pcp/pcx152. PubMed DOI

Liu M.Y., Lou H.Q., Chen W.W., Piñeros M.A., Xu J.M., Fan W., Kochian L.V., Zheng S.J., Yang J.L. Two Citrate Transporters Coordinately Regulate Citrate Secretion from Rice Bean Root Tip under Aluminum Stress. Plant Cell Environ. 2018;41:809–822. doi: 10.1111/pce.13150. PubMed DOI

Maron L.G., Piñeros M.A., Guimarães C.T., Magalhaes J.V., Pleiman J.K., Mao C., Shaff J., Belicuas S.N., Kochian L.V. Two Functionally Distinct Members of the MATE (Multi-drug and Toxic Compound Extrusion) Family of Transporters Potentially Underlie Two Major Aluminum Tolerance QTLs in Maize. Plant J. 2010;61:728–740. doi: 10.1111/j.1365-313X.2009.04103.x. PubMed DOI

Yokosho K., Yamaji N., Ma J.F. Isolation and Characterisation of Two MATE Genes in Rye. Funct. Plant Biol. 2010;37:296–303. doi: 10.1071/FP09265. DOI

Yokosho K., Yamaji N., Ma J.F. An Al-inducible MATE Gene Is Involved in External Detoxification of Al in Rice. Plant J. 2011;68:1061–1069. doi: 10.1111/j.1365-313X.2011.04757.x. PubMed DOI

Fan W., Xu J.-M., Lou H.-Q., Xiao C., Chen W.-W., Yang J.-L. Physiological and Molecular Analysis of Aluminium-Induced Organic Acid Anion Secretion from Grain Amaranth (Amaranthus Hypochondriacus L.) Roots. Int. J. Mol. Sci. 2016;17:608. doi: 10.3390/ijms17050608. PubMed DOI PMC

Furukawa J., Yamaji N., Wang H., Mitani N., Murata Y., Sato K., Katsuhara M., Takeda K., Ma J.F. An Aluminum-Activated Citrate Transporter in Barley. Plant Cell Physiol. 2007;48:1081–1091. doi: 10.1093/pcp/pcm091. PubMed DOI

Magalhaes J.V., Liu J., Guimaraes C.T., Lana U.G., Alves V.M., Wang Y.-H., Schaffert R.E., Hoekenga O.A., Pineros M.A., Shaff J.E. A Gene in the Multidrug and Toxic Compound Extrusion (MATE) Family Confers Aluminum Tolerance in Sorghum. Nat. Genet. 2007;39:1156–1161. doi: 10.1038/ng2074. PubMed DOI

Ribeiro A.P., de Souza W.R., Martins P.K., Vinecky F., Duarte K.E., Basso M.F., da Cunha B.A., Campanha R.B., de Oliveira P.A., Centeno D.C. Overexpression of BdMATE Gene Improves Aluminum Tolerance in Setaria Viridis. Front. Plant Sci. 2017;8:865. doi: 10.3389/fpls.2017.00865. PubMed DOI PMC

Zhu D., Li R., Liu X., Sun M., Wu J., Zhang N., Zhu Y. The Positive Regulatory Roles of the TIFY10 Proteins in Plant Responses to Alkaline Stress. PLoS ONE. 2014;9:e111984. doi: 10.1371/journal.pone.0111984. PubMed DOI PMC

Sun M., Sun X., Zhao Y., Zhao C., DuanMu H., Yu Y., Ji W., Zhu Y. Ectopic Expression of GsPPCK3 and SCMRP in Medicago Sativa Enhances Plant Alkaline Stress Tolerance and Methionine Content. PLoS ONE. 2014;9:e89578. doi: 10.1371/journal.pone.0089578. PubMed DOI PMC

Barone P., Rosellini D., LaFayette P., Bouton J., Veronesi F., Parrott W. Bacterial Citrate Synthase Expression and Soil Aluminum Tolerance in Transgenic Alfalfa. Plant Cell Rep. 2008;27:893–901. doi: 10.1007/s00299-008-0517-x. PubMed DOI

Deng W., Luo K., Li Z., Yang Y., Hu N., Wu Y. Overexpression of Citrus Junos Mitochondrial Citrate Synthase Gene in Nicotiana Benthamiana Confers Aluminum Tolerance. Planta. 2009;230:355–365. doi: 10.1007/s00425-009-0945-z. PubMed DOI

Sweetlove L.J., Beard K.F., Nunes-Nesi A., Fernie A.R., Ratcliffe R.G. Not Just a Circle: Flux Modes in the Plant TCA Cycle. Trends Plant Sci. 2010;15:462–470. doi: 10.1016/j.tplants.2010.05.006. PubMed DOI

Ganjewala D., Kaur G., Srivastava N. Molecular Approaches in Plant Biology and Environmental Challenges. Springer; Singapore: 2019. Metabolic Engineering of Stress Protectant Secondary Metabolites to Confer Abiotic Stress Tolerance in Plants; pp. 207–227.

Araújo W.L., Martins A.O., Fernie A.R., Tohge T. 2-Oxoglutarate: Linking TCA Cycle Function with Amino Acid, Glucosinolate, Flavonoid, Alkaloid, and Gibberellin Biosynthesis. Front. Plant Sci. 2014;5:552. doi: 10.3389/fpls.2014.00552. PubMed DOI PMC

Katz E., Fon M., Lee Y., Phinney B., Sadka A., Blumwald E. The Citrus Fruit Proteome: Insights into Citrus Fruit Metabolism. Planta. 2007;226:989–1005. doi: 10.1007/s00425-007-0545-8. PubMed DOI

Walker R.P., Battistelli A., Moscatello S., Chen Z.-H., Leegood R.C., Famiani F. Phosphoenolpyruvate Carboxykinase in Cherry (Prunus Avium L.) Fruit during Development. J. Exp. Bot. 2011;62:5357–5365. doi: 10.1093/jxb/err189. PubMed DOI

Cercós M., Soler G., Iglesias D.J., Gadea J., Forment J., Talón M. Global Analysis of Gene Expression during Development and Ripening of Citrus Fruit Flesh. A Proposed Mechanism for Citric Acid Utilization. Plant Mol. Biol. 2006;62:513–527. doi: 10.1007/s11103-006-9037-7. PubMed DOI

Fatland B.L., Nikolau B.J., Wurtele E.S. Reverse Genetic Characterization of Cytosolic Acetyl-CoA Generation by ATP-Citrate Lyase in Arabidopsis. Plant Cell. 2005;17:182–203. doi: 10.1105/tpc.104.026211. PubMed DOI PMC

Degu A., Hatew B., Nunes-Nesi A., Shlizerman L., Zur N., Katz E., Fernie A.R., Blumwald E., Sadka A. Inhibition of Aconitase in Citrus Fruit Callus Results in a Metabolic Shift towards Amino Acid Biosynthesis. Planta. 2011;234:501–513. doi: 10.1007/s00425-011-1411-2. PubMed DOI

Li S., Wang W., Ma Y., Liu S., Grierson D., Yin X., Chen K. Citrus CitERF6 Contributes to Citric Acid Degradation via Upregulation of CitAclα1, Encoding ATP-Citrate Lyase Subunit α. J. Agric. Food Chem. 2020;68:10081–10087. doi: 10.1021/acs.jafc.0c03669. PubMed DOI

Signorelli S., Arellano J.B., Melø T.B., Borsani O., Monza J. Proline Does Not Quench Singlet Oxygen: Evidence to Reconsider Its Protective Role in Plants. Plant Physiol. Biochem. 2013;64:80–83. doi: 10.1016/j.plaphy.2012.12.017. PubMed DOI

Shimajiri Y., Oonishi T., Ozaki K., Kainou K., Akama K. Genetic Manipulation of the Γ-aminobutyric Acid (GABA) Shunt in Rice: Overexpression of Truncated Glutamate Decarboxylase (GAD 2) and Knockdown of Γ-aminobutyric Acid Transaminase (GABA-T) Lead to Sustained and High Levels of GABA Accumulation in Rice Kernels. Plant Biotechnol. J. 2013;11:594–604. PubMed

Ali Q., Habib-ur-Rehman Athar M.Z., Haider S.S., Aslam N., Shehzad F., Naseem J., Ashraf R., Ali A., Hussain S.M. Role of Amino Acids in Improving Abiotic Stress Tolerance to Plants. In: Hasanuzzaman M., Fujita M., Oku H., Islam M.T., editors. Plant Tolerance to Environmental Stress: Role of Phytoprotectants. CRC Press; Boca Raton, FL, USA: 2019. pp. 175–204.

Igamberdiev A.U., Eprintsev A.T. Organic Acids: The Pools of Fixed Carbon Involved in Redox Regulation and Energy Balance in Higher Plants. Front. Plant Sci. 2016;7:1042. doi: 10.3389/fpls.2016.01042. PubMed DOI PMC

Ludwig M. The Roles of Organic Acids in C4 Photosynthesis. Front. Plant Sci. 2016;7:647. doi: 10.3389/fpls.2016.00647. PubMed DOI PMC

Han Y.-C., Kuang J.-F., Chen J.-Y., Liu X.-C., Xiao Y.-Y., Fu C.-C., Wang J.-N., Wu K.-Q., Lu W.-J. Banana Transcription Factor MaERF11 Recruits Histone Deacetylase MaHDA1 and Represses the Expression of MaACO1 and Expansins during Fruit Ripening. Plant Physiol. 2016;171:1070–1084. doi: 10.1104/pp.16.00301. PubMed DOI PMC

Crifò T., Puglisi I., Petrone G., Recupero G.R., Piero A.R.L. Expression Analysis in Response to Low Temperature Stress in Blood Oranges: Implication of the Flavonoid Biosynthetic Pathway. Gene. 2011;476:1–9. doi: 10.1016/j.gene.2011.02.005. PubMed DOI

Xing S., van Deenen N., Magliano P., Frahm L., Forestier E., Nawrath C., Schaller H., Gronover C.S., Prüfer D., Poirier Y. ATP Citrate Lyase Activity Is Post-translationally Regulated by Sink Strength and Impacts the Wax, Cutin and Rubber Biosynthetic Pathways. Plant J. 2014;79:270–284. doi: 10.1111/tpj.12559. PubMed DOI

Yang D., Du X., Liang X., Han R., Liang Z., Liu Y., Liu F., Zhao J. Different Roles of the Mevalonate and Methylerythritol Phosphate Pathways in Cell Growth and Tanshinone Production of Salvia Miltiorrhiza Hairy Roots. PLoS ONE. 2012;7:e46797. doi: 10.1371/journal.pone.0046797. PubMed DOI PMC

Liao P., Hemmerlin A., Bach T.J., Chye M.-L. The Potential of the Mevalonate Pathway for Enhanced Isoprenoid Production. Biotechnol. Adv. 2016;34:697–713. doi: 10.1016/j.biotechadv.2016.03.005. PubMed DOI

Lipko A., Swiezewska E. Isoprenoid Generating Systems in Plants—A Handy Toolbox How to Assess Contribution of the Mevalonate and Methylerythritol Phosphate Pathways to the Biosynthetic Process. Prog. Lipid Res. 2016;63:70–92. doi: 10.1016/j.plipres.2016.04.002. PubMed DOI

Li C., Schilmiller A.L., Liu G., Lee G.I., Jayanty S., Sageman C., Vrebalov J., Giovannoni J.J., Yagi K., Kobayashi Y. Role of β-Oxidation in Jasmonate Biosynthesis and Systemic Wound Signaling in Tomato. Plant Cell. 2005;17:971–986. doi: 10.1105/tpc.104.029108. PubMed DOI PMC

Piero A.R.L., Cicero L.L., Puglisi I. The Metabolic Fate of Citric Acid as Affected by Cold Storage in Blood Oranges. J. Plant Biochem. Biotechnol. 2014;23:161–166. doi: 10.1007/s13562-013-0197-7. DOI

Chen M., Jiang Q., Yin X.-R., Lin Q., Chen J.-Y., Allan A.C., Xu C.-J., Chen K.-S. Effect of Hot Air Treatment on Organic Acid-and Sugar-Metabolism in Ponkan (Citrus Reticulata) Fruit. Sci. Hortic. 2012;147:118–125. doi: 10.1016/j.scienta.2012.09.011. DOI

Phan T.-T., Li J., Sun B., Liu J.-Y., Zhao W.-H., Huang C., Yang L.-T., Li Y.-R. ATP-Citrate Lyase Gene (SoACLA-1), a Novel ACLA Gene in Sugarcane, and Its Overexpression Enhance Drought Tolerance of Transgenic Tobacco. Sugar. Tech. 2017;19:258–269. doi: 10.1007/s12355-016-0464-8. DOI

Ye N., Zhu G., Liu Y., Zhang A., Li Y., Liu R., Shi L., Jia L., Zhang J. Ascorbic Acid and Reactive Oxygen Species Are Involved in the Inhibition of Seed Germination by Abscisic Acid in Rice Seeds. J. Exp. Bot. 2012;63:1809–1822. doi: 10.1093/jxb/err336. PubMed DOI PMC

Sadak M.S., Elhamid E., Mostafa H.M. Alleviation of Adverse Effects of Salt Stress in Wheat Cultivars by Foliar Treatment with Antioxidants I. Changes in Growth, Some Biochemical Aspects and Yield Quantity and Quality. Am. Eur. J. Agric. Environ. Sci. 2013;13:1476–1487.

Hedrich R., Marten I. Malate-induced Feedback Regulation of Plasma Membrane Anion Channels Could Provide a CO2 Sensor to Guard Cells. EMBO J. 1993;12:897–901. doi: 10.1002/j.1460-2075.1993.tb05730.x. PubMed DOI PMC

Van Oosten M.J., Pepe O., De Pascale S., Silletti S., Maggio A. The Role of Biostimulants and Bioeffectors as Alleviators of Abiotic Stress in Crop Plants. Chem. Biol. Technol. Agric. 2017;4:1–12. doi: 10.1186/s40538-017-0089-5. DOI

Chavoushi M., Najafi F., Salimi A., Angaji S. Improvement in Drought Stress Tolerance of Safflower during Vegetative Growth by Exogenous Application of Salicylic Acid and Sodium Nitroprusside. Ind. Crops Prod. 2019;134:168–176. doi: 10.1016/j.indcrop.2019.03.071. DOI

Roy P.R., Tahjib-Ul-Arif M., Polash M.A.S., Hossen M.Z., Hossain M.A. Physiological Mechanisms of Exogenous Calcium on Alleviating Salinity-Induced Stress in Rice (Oryza Sativa L.) Physiol. Mol. Biol. Plants. 2019;25:611–624. doi: 10.1007/s12298-019-00654-8. PubMed DOI PMC

Tahjib-Ul-Arif M., Afrin S., Polash M.A.S., Akter T., Ray S.R., Hossain M.T., Hossain M.A. Role of Exogenous Signaling Molecules in Alleviating Salt-Induced Oxidative Stress in Rice (Oryza Sativa L.): A Comparative Study. Acta Physiol. Plant. 2019;41:1–14. doi: 10.1007/s11738-019-2861-6. DOI

Sohag A.A.M., Tahjib-Ul-Arif M., Afrin S., Khan M.K., Hannan M.A., Skalicky M., Mortuza M.G., Brestic M., Hossain M.A., Murata Y. Insights into Nitric Oxide-Mediated Water Balance, Antioxidant Defence and Mineral Homeostasis in Rice (Oryza Sativa L.) under Chilling Stress. Nitric Oxide. 2020;100:7–16. doi: 10.1016/j.niox.2020.04.001. PubMed DOI

Sohag A.A.M., Tahjib-Ul-Arif M., Polash M.A.S., Chowdhury M.B., Afrin S., Burritt D.J., Murata Y., Hossain M.A., Hossain M.A. Exogenous Glutathione-Mediated Drought Stress Tolerance in Rice (Oryza Sativa L.) Is Associated with Lower Oxidative Damage and Favorable Ionic Homeostasis. Iran. J. Sci. Technol. Trans. Sci. 2020;44:955–971. doi: 10.1007/s40995-020-00917-0. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Single and interactive effects of variables associated with climate change on wheat metabolome

. 2022 ; 13 () : 1002561. [epub] 20221010

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...