Under drought conditions, arbuscular mycorrhizal (AM) fungi may improve plant performance by facilitating the movement of water through extensive hyphal networks. When these networks interconnect neighboring plants in common mycorrhizal networks (CMNs), CMNs are likely to partition water among many individuals. The consequences of CMN-mediated water movement for plant interactions, however, are largely unknown. We set out to examine CMN-mediated interactions among Andropogon gerardii seedlings in a target-plant pot experiment, with watering (watered or long-term drought) and CMN status (intact or severed) as treatments. Intact CMNs improved the survival of seedlings under drought stress and mediated positive, facilitative plant interactions in both watering treatments. Watering increased mycorrhizal colonization rates and improved P uptake, particularly for large individuals. Under drought conditions, improved access to water most likely benefited neighboring plants interacting across CMNs. CMNs appear to have provided the most limiting resource within each treatment, whether P, water, or both, thereby improving survival and growth. Neighbors near large, photosynthate-fixing target plants likely benefited from their establishment of extensive hyphal networks that could access water and dissolved P within soil micropores. In plant communities, CMNs may be vital during drought, which is expected to increase in frequency, intensity, and length with climate change.
- Klíčová slova
- Andropogon gerardii (Big Bluestem), Arbuscular mycorrhizal fungi, Common mycorrhizal networks, Drought, Phosphorus, Plant survival,
- MeSH
- Andropogon * mikrobiologie fyziologie MeSH
- fyziologický stres * fyziologie MeSH
- Kaplanův-Meierův odhad MeSH
- mykorhiza * fyziologie MeSH
- přežití MeSH
- semenáček * mikrobiologie fyziologie MeSH
- voda metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- voda MeSH
Activating transcription factor 4 (ATF4) is a key player in the integrated stress response, whose expression is subject to tight translational control. Studying its stress-provoked induction, accompanied by the general translational shutdown, is intricate because the expression of reference genes declines rapidly, and finding appropriate normalization controls is challenging. We present a protocol for human hemagglutinin-tagged ATF4 (hATF4-HA) detection and high-throughput quantification in non-stress versus stress conditions using automated and quantitative western blotting. We describe steps for seeding cells, transfecting plasmids, thapsigargin treatment, sample preparation, and target protein detection. For complete details on the use and execution of this protocol, please refer to Smirnova et al.1.
- Klíčová slova
- cell culture, gene expression, protein expression and purification,
- MeSH
- fyziologický stres * fyziologie MeSH
- HEK293 buňky MeSH
- hemaglutininy genetika metabolismus MeSH
- lidé MeSH
- transkripční faktor ATF4 * metabolismus genetika MeSH
- western blotting * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ATF4 protein, human MeSH Prohlížeč
- hemaglutininy MeSH
- transkripční faktor ATF4 * MeSH
G protein-coupled estrogen receptor 1 (GPER-1) has gained recognition for its role in conferring cardioprotection. However, the extent to which GPER-1 exerts equally important effects in both sexes remains unclear. The study found similar expressions of GPER-1 in rat heart apex in both sexes. In male rats, administering epinephrine (Epi) at a dose of 31.36 microg/100 g resulted in a rapid decline in cardiac function, accompanied by a sharp increase in bax/bcl-2 levels. In contrast, female rats did not display significant changes in cardiac function under the same conditions. Additionally, compared to the injection of Epi alone (at a dose of 15.68 microg/100 g), the administration of G15 (GPER-1 antagonist) further decreased cardiac function in both male and female rats. However, it only increased mortality and lung coefficient in male rats. Conversely, G1 (GPER-1 agonist) administration improved cardiac function in both sexes. Notably, the apex of the male heart exhibited lower levels of inhibitory G protein (Galphai). Furthermore, female and male rats treated with Epi displayed elevated phosphorylated protein kinase B (p-Akt). Compared to their respective Epi groups, the administration of G15 increased p-Akt levels in female rat hearts but decreased them in male rat hearts. Conversely, the administration of G1 decreased p-Akt levels in females but rapidly increased them in male rats. Our study uncovers the vital role of GPER-1 in protecting against stress-induced heart injuries in a sex-specific manner. These findings hold immense potential for advancing targeted cardiac therapies and enhancing outcomes for both females and males.
- MeSH
- adrenalin MeSH
- fyziologický stres fyziologie MeSH
- krysa rodu Rattus MeSH
- pohlavní dimorfismus MeSH
- potkani Sprague-Dawley * MeSH
- protoonkogenní proteiny c-akt * metabolismus MeSH
- receptory pro estrogeny metabolismus MeSH
- receptory spřažené s G-proteiny * metabolismus MeSH
- sexuální faktory MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adrenalin MeSH
- Gper1 protein, rat MeSH Prohlížeč
- protoonkogenní proteiny c-akt * MeSH
- receptory pro estrogeny MeSH
- receptory spřažené s G-proteiny * MeSH
Early mild stress (EMS) is like preparedness and might help fish deal with stress appropriately. This study investigated how EMS and photoperiod changes can impact growth, haematology, blood biochemistry, immunological response, antioxidant system, liver enzymes, and stress response of oscar (Astronotus ocellatus; 7.29 ± 0.96 g) before and after acute confinement stress (AC stress). Ten experimental treatments included five different photoperiods 8L16D (08:16 light to dark), 12L12D (12:12 light to dark), 16L8D (16:08 light to dark), 20L4D (20:04 light to dark), and 24L0D (24:00 light to dark), and these five photoperiod schedules were conducted in an EMS condition. After 9 weeks, no significant differences were found in growth parameters, survival rate, and body composition. At the end of the experiment and after AC stress, fish farmed in 24 light hours had the lowest haematocrit, white blood cells, total protein, blood performance, lysozyme, immunoglobulin M, complement C3, superoxide dismutase, and catalase. Fish that experienced EMS had significantly higher survival rates than those farmed in normal conditions (80.67% vs 61.33%). In conclusion, considering all measured parameters, 8-h light can be suggested as an optimum photoperiod for this fish species. Under 24L0D (no EMS) conditions, there were many negative effects apparent. In addition, a positive effect of EMS was evident in terms of survival after AC stress. AC stress decreased some health parameters under 24-h light treatment, while these results were not observed in EMS-exposed fish. Therefore, the EMS schedule can be a useful tool in preventing the negative effects of stress.
- Klíčová slova
- Antioxidant response, Blood biochemistry, Blood performance, Continuous light, Stress physiology,
- MeSH
- fotoperioda * MeSH
- fyziologický stres * fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
With the advent of human civilization and anthropogenic activities in the shade of urbanization and global climate change, plants are exposed to a complex set of abiotic stresses. These stresses affect plants' growth, development, and yield and cause enormous crop losses worldwide. In this alarming scenario of global climate conditions, plants respond to such stresses through a highly balanced and finely tuned interaction between signaling molecules. The abiotic stresses initiate the quick release of reactive oxygen species (ROS) as toxic by-products of altered aerobic metabolism during different stress conditions at the cellular level. ROS includes both free oxygen radicals {superoxide (O2•-) and hydroxyl (OH-)} as well as non-radicals [hydrogen peroxide (H2O2) and singlet oxygen (1O2)]. ROS can be generated and scavenged in different cell organelles and cytoplasm depending on the type of stimulus. At high concentrations, ROS cause lipid peroxidation, DNA damage, protein oxidation, and necrosis, but at low to moderate concentrations, they play a crucial role as secondary messengers in intracellular signaling cascades. Because of their concentration-dependent dual role, a huge number of molecules tightly control the level of ROS in cells. The plants have evolved antioxidants and scavenging machinery equipped with different enzymes to maintain the equilibrium between the production and detoxification of ROS generated during stress. In this present article, we have focused on current insights on generation and scavenging of ROS during abiotic stresses. Moreover, the article will act as a knowledge base for new and pivotal studies on ROS generation and scavenging.
- Klíčová slova
- ROS, ROS scavenging, abiotic stress, antioxidants, global climate change, signal transduction,
- MeSH
- fyziologický stres fyziologie MeSH
- klimatické změny MeSH
- lidé MeSH
- peroxidace lipidů fyziologie MeSH
- poškození DNA fyziologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rostliny metabolismus MeSH
- signální transdukce fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- reaktivní formy kyslíku MeSH
Heavy metal toxicity is one of the most devastating abiotic stresses. Heavy metals cause serious damage to plant growth and productivity, which is a major problem for sustainable agriculture. It adversely affects plant molecular physiology and biochemistry by generating osmotic stress, ionic imbalance, oxidative stress, membrane disorganization, cellular toxicity, and metabolic homeostasis. To improve and stimulate plant tolerance to heavy metal stress, the application of biostimulants can be an effective approach without threatening the ecosystem. Melatonin (N-acetyl-5-methoxytryptamine), a biostimulator, plant growth regulator, and antioxidant, promotes plant tolerance to heavy metal stress by improving redox and nutrient homeostasis, osmotic balance, and primary and secondary metabolism. It is important to perceive the complete and detailed regulatory mechanisms of exogenous and endogenous melatonin-mediated heavy metal-toxicity mitigation in plants to identify potential research gaps that should be addressed in the future. This review provides a novel insight to understand the multifunctional role of melatonin in reducing heavy metal stress and the underlying molecular mechanisms.
- Klíčová slova
- abiotic stress, heavy metal, oxidative stress, phytomelatonin, plant growth,
- MeSH
- antioxidancia metabolismus farmakologie MeSH
- ekosystém MeSH
- fyziologický stres fyziologie MeSH
- látky znečišťující půdu metabolismus MeSH
- melatonin metabolismus farmakologie fyziologie MeSH
- oxidace-redukce MeSH
- oxidační stres účinky léků fyziologie MeSH
- průmyslová hnojiva MeSH
- půda chemie MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostliny účinky léků metabolismus MeSH
- těžké kovy metabolismus toxicita MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antioxidancia MeSH
- látky znečišťující půdu MeSH
- melatonin MeSH
- průmyslová hnojiva MeSH
- půda MeSH
- regulátory růstu rostlin MeSH
- těžké kovy MeSH
Hunting can easily be linked to stress in wildlife. Drive hunts performed two to three times in one area during the respective hunting period, are thought to decrease the pressure hunting places on wildlife. Nevertheless, the expression of cortisol-one of the main mammalian stress hormones-is considered to have negative impacts on animals' well-being if expressed excessively, which may occur during some (especially repeated) hunting events. We explored the effect of drive hunts on cortisol levels in wild boar in Lower Saxony, Germany, compared these cortisol levels to reference values given by a similar study, and investigated the effect of age, sex, and pregnancy. Blood collected from wild boar shot on drive hunts was analysed using a radioimmunoassay. As expected, we observed elevated cortisol levels in all samples, however, we still found significant differences between age groups and sexes, as well as an influence of pregnancy on cortisol levels. The effect of drive hunts on cortisol levels appears to be weaker than predicted, while the effects of other variables, such as sex, are distinct. Only half of the evaluated samples showed explicitly increased cortisol levels and no significant differences were found between sampling months and locations. Group living animals and pregnant females showed significantly higher cortisol levels. The impact of hunting is measurable but is masked by natural effects such as pregnancy. Thus, we need more information on stress levels in game species.
- MeSH
- divoká zvířata metabolismus fyziologie MeSH
- fyziologický stres fyziologie MeSH
- hydrokortison metabolismus MeSH
- Sus scrofa metabolismus fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Německo MeSH
- Názvy látek
- hydrokortison MeSH
Bacterial spot, caused by a group of Xanthomonads (Xanthomonas spp.), is a devastating disease. It can adversely affect the Capsicum annum productivity. Scientists are working on the role of antioxidants to meet this challenge. However, research is lacking on the role of antioxidant enzymes and their isoforms in the non-compatible pathogen and host plant interaction and resistance mechanisms in capsicum varieties. The present study was conducted to ascertain the defensive role of antioxidant enzymes and their isoforms in chilli varieties Hybrid, Desi, Serrano, Padron, and Shehzadi against bacterial spot disease-induced Xanthomonas sp. The seedlings were inoculated with bacterial pathogen @ 107 CFU/mL, and samples were harvested after regular intervals of 24 h for 4 days followed by inoculation. Total plant proteins were extracted in phosphate buffer and quantified through Bradford assay. The crude protein extracts were analyzed through quantitative enzymatic assays in order to document activity levels of various antioxidant enzymes, including peroxidase (POD), Catalase (CAT), Ascorbate peroxidase (APX), and Superoxide dismutase (SOD). Moreover, the profiles appearance of these enzymes and their isoforms were determined using native polyacrylamide gel electrophoresis (PAGE) analysis. These enzymes exhibited maximum activity in Hybrid (HiR) cultivar followed by Desi (R), Serrano (S), Padron, and Shehzadi (HS). Both the number of isoforms and expression levels were higher in highly resistant cultivars compared to susceptible and highly susceptible cultivars. The induction of POD, CAT, and SOD occurs at the early stages of growth in resistant Capsicum cultivars. At the same time, APX seems to make the second line of antioxidant defense mechanisms. We found that modulating antioxidant enzymes and isoforms activity at the seedling stage was an important mechanism for mitigating plant growth inhibition in the resistant ones.
- MeSH
- antioxidancia metabolismus MeSH
- askorbátperoxidasa metabolismus MeSH
- Capsicum růst a vývoj mikrobiologie MeSH
- fyziologický stres fyziologie MeSH
- katalasa metabolismus MeSH
- nemoci rostlin mikrobiologie MeSH
- oxidační stres fyziologie MeSH
- peroxid vodíku analýza MeSH
- peroxidasa metabolismus MeSH
- protein - isoformy metabolismus MeSH
- rostlinné proteiny analýza MeSH
- superoxiddismutasa metabolismus MeSH
- Xanthomonas patogenita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia MeSH
- askorbátperoxidasa MeSH
- katalasa MeSH
- peroxid vodíku MeSH
- peroxidasa MeSH
- protein - isoformy MeSH
- rostlinné proteiny MeSH
- superoxiddismutasa MeSH
Parallel adaptation results from the independent evolution of similar traits between closely related lineages and allows us to test to what extent evolution is repeatable. Similar gene expression changes are often detected but the identity of genes shaped by parallel selection and the causes of expression parallelism remain largely unknown. By comparing genomes and transcriptomes of four distinct foothill-alpine population pairs across four treatments, we addressed the genetic underpinnings, plasticity and functional consequences of gene expression parallelism in alpine adaptation. Seeds of eight populations of Arabidopsis arenosa were raised under four treatments that differed in temperature and irradiance, factors varying strongly with elevation. Parallelism in differential gene expression between the foothill and alpine ecotypes was quantified by RNA-seq in leaves of young plants. By manipulating temperature and irradiance, we also tested for parallelism in plasticity (i.e., gene-environment interaction, GEI). In spite of global non-parallel patterns transcriptome wide, we found significant parallelism in gene expression at the level of individual loci with an over-representation of genes involved in biotic stress response. In addition, we demonstrated significant parallelism in GEI, indicating a shared differential response of the originally foothill versus alpine populations to environmental variation across mountain regions. A fraction of genes showing expression parallelism also encompassed parallel outliers for genomic differentiation, with greater enrichment of such variants in cis-regulatory elements in some mountain regions. In summary, our results suggest frequent evolutionary repeatability in gene expression changes associated with the colonization of a challenging environment that combines constitutive expression differences and plastic interaction with the surrounding environment.
- Klíčová slova
- Arabidopsis arenosa, alpine adaptation, common garden experiment, gene expression, gene-environment interaction, parallel evolution, plasticity,
- MeSH
- Arabidopsis genetika metabolismus MeSH
- ekosystém MeSH
- ekotyp MeSH
- fyziologický stres genetika fyziologie MeSH
- sekvenování transkriptomu metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Phytochemical investigations of Matricaria chamomilla L. (Asteraceae) stated the presence of several compounds with an established therapeutic and antioxidant potential. The chamomile non-enzymatic antioxidant system includes low molecular mass compounds, mainly polyphenols such as cinnamic, hydroxybenzoic and chlorogenic acids, flavonoids and coumarins. The objective of this work was to evaluate the role of the non-enzymatic antioxidant system after stimulation by ethylene in tetraploid chamomile plants. Seven days of ethylene treatment significantly increased the activity of phenylalanine ammonia-lyase, which influenced the biosynthesis of protective polyphenols in the first step of their biosynthetic pathway. Subsequently, considerable enhanced levels of phenolic metabolites with a substantial antioxidant effect (syringic, vanillic and caffeic acid, 1,5-dicaffeoylquinic acid, quercetin, luteolin, daphnin, and herniarin) were determined by HPLC-DAD-MS. The minimal information on the chlorogenic acids function in chamomile led to the isolation and identification of 5-O-feruloylquinic acid. It is accumulated during normal conditions, but after the excessive effect of abiotic stress, its level significantly decreases and levels of other caffeoylquinic acids enhance. Our results suggest that ethephon may act as a stimulant of the production of pharmaceutically important non-enzymatic antioxidants in chamomile leaves and thus, lead to an overall change in phytochemical content and therapeutic effects of chamomile plants, as well.
- Klíčová slova
- antioxidants, chamomile, chlorogenic acids, ethylene,
- MeSH
- antioxidancia metabolismus MeSH
- biosyntetické dráhy fyziologie MeSH
- ethyleny metabolismus MeSH
- fenoly metabolismus MeSH
- fenylalaninamoniaklyasa metabolismus MeSH
- fyziologický stres fyziologie MeSH
- heřmánek, heřmánkovec, rmen, rmenec metabolismus MeSH
- kyselina chinová analogy a deriváty metabolismus MeSH
- kyselina chlorogenová metabolismus MeSH
- kyseliny kávové metabolismus MeSH
- listy rostlin metabolismus MeSH
- Matricaria metabolismus MeSH
- polyfenoly metabolismus MeSH
- rostlinné extrakty metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- caffeic acid MeSH Prohlížeč
- caffeoylquinic acid MeSH Prohlížeč
- ethyleny MeSH
- fenoly MeSH
- fenylalaninamoniaklyasa MeSH
- kyselina chinová MeSH
- kyselina chlorogenová MeSH
- kyseliny kávové MeSH
- polyfenoly MeSH
- rostlinné extrakty MeSH