Contaminants of emerging concern - passive sampling Dotaz Zobrazit nápovědu
The occurrence of chemical and biological contaminants of emerging concern (CECs) was investigated in treated wastewater intended for reuse in agriculture. An agarose hydrogel diffusion-based passive sampler was exposed to the outlet of a wastewater treatment plant (WWTP) located in Cyprus, which is equipped with membrane bioreactor (MBR). Passive samplers in triplicate were exposed according to a time-series exposure plan with maximum exposure duration of 28 days. Composite flow-proportional wastewater samples were collected in parallel with the passive sampling exposure plan and were processed by solid phase extraction using HORIZON SPE-DEX 4790 and the same sorbent material (Oasis HLB) as in the passive sampler. The analysis of passive samplers and wastewater samples enabled (i) the field-scale calibration of the passive sampler prototype by the calculation of in situ sampling rates of target substances, and (ii) the investigation of in silico predicted transformation products of the four most ecotoxicologically hazardous antibiotics (azithromycin, clarithromycin, erythromycin, ofloxacin). Additionally, the wastewater samples were subjected to the analysis of seven preselected antibiotic resistant genes (ARGs) and one mobile resistant element (int1). All extracts were analyzed for chemicals in a single batch using a highly sensitive method for pharmaceuticals, antibiotics and illicit drugs by liquid chromatography tandem MS/MS (LC-QQQ) and for various other target compounds (2316 compounds in total) by liquid chromatography high-resolution mass spectrometry (LC-HRMS). 279 CECs and all investigated ARGs (except for blaCTX-M-32) were detected, highlighting potential chemical and biological hazards related to wastewater reuse practices. 16 CECs were prioritized following ecotoxicological risk assessment, whereas sul1 and the mobile resistant element (int1) showed the highest abundance. Comprehensive monitoring efforts using novel sampling methods such as passive sampling, wide-scope target screening and molecular analysis are required to assure safe application of wastewater reuse and avoid spread and crop uptake of potentially hazardous chemicals.
- Klíčová slova
- Antibiotic resistance genes, Antibiotics, Contaminants of emerging concern, Hydrogel-based passive sampler, Transformation products, Wastewater reuse,
- MeSH
- chemické látky znečišťující vodu * analýza MeSH
- monitorování životního prostředí MeSH
- odpadní voda * MeSH
- tandemová hmotnostní spektrometrie MeSH
- zemědělství MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- odpadní voda * MeSH
A promising concept for sampling contaminants of emerging concern (CECs) using a home-made Simple Teabag Equilibrium Passive Sampler (STEPS) containing hydrophilic divinylbenzene (h-DVB) sorbent is presented and evaluated for application in estuarine systems. The uptake of a multi-class mixture of CECs with a broad polarity range (Log P ranging from -0.1 to 9.9) was investigated in static exposure batch experiments. Sampling rates (Rs) and equilibrium partitioning coefficients (Ksw) were determined for up to 74 CECs. Fast uptake (Rs = 0.3-12 L d-1) was noticed and the STEPS attained equilibrium partitioning after 1 to 2 weeks of exposure, with Log Ksw ranging from 4.1 to 6.5 L kg-1. Field application of this novel h-DVB containing STEPS, followed by ultra-high performance liquid chromatography coupled to high-resolution Orbitrap mass spectrometry, revealed the presence of up to 40 steroidal hormones, (alkyl)phenols, phthalates, pharmaceuticals, personal care products, and pesticides in the Belgian Part of the North Sea. The measured trace concentrations (from 0.003 ng L-1 to 1.9 μg L-1) and good precision (average RSD < 30%, n = 3) demonstrate the STEPS as fit-for-purpose for micropollutant analysis in the marine environment.
- Klíčová slova
- Equilibrium partitioning, Marine environment, Micropollutant, Passive sampling, Sampling rate, Teabag,
- Publikační typ
- časopisecké články MeSH
Complex mixtures of contaminants from multiple sources, including agriculture, industry or wastewater enter aquatic environments and might pose hazards or risks to humans or wildlife. Targeted analyses of a few priority substances provide limited information about water quality. In this study, a combined chemical and effect screening of water quality in the River Bosna, in Bosnia and Herzegovina was carried out, with focus on occurrence and effects of contaminants of emerging concern. Chemicals in water were sampled at 10 sites along the Bosna River by use of passive sampling. The combination of semipermeable membrane devices (SPMDs) and polar organic chemical integrative samplers (POCIS) enabled sampling of a broad range of contaminants from hydrophobic (PAHs, PCBs, OCPs) to hydrophilic compounds (pesticides, pharmaceuticals and hormones), which were determined by use of GC-MS and LC-MS (MS). In vitro, cell-based bioassays were applied to assess (anti)androgenic, estrogenic and dioxin-like potencies of extracts of the samplers. Of a total of 168 targeted compounds, 107 were detected at least once. Cumulative pollutant concentrations decreased downstream from the city of Sarajevo, which was identified as the major source of organic pollutants in the area. Responses in all bioassays were observed for samples from all sites. In general, estrogenicity could be well explained by analysis of target estrogens, while the drivers of the other observed effects remained largely unknown. Profiling of hazard quotients identified two sites downstream of Sarajevo as hotspots of biological potency. Risk assessment of detected compounds revealed, that 7 compounds (diazinon, diclofenac, 17β-estradiol, estrone, benzo[k]fluoranthene, fluoranthene and benzo[k]fluoranthene) might pose risks to aquatic biota in the Bosna River. The study brings unique results of a complex water quality assessment in a region with an insufficient water treatment infrastructure.
- Klíčová slova
- Contaminants of emerging concern - passive sampling, Hazard profiling - water quality monitoring, In vitro bioassay - endocrine disruption,
- MeSH
- biotest MeSH
- chemické látky znečišťující vodu analýza MeSH
- dioxiny analýza MeSH
- endokrinní disruptory analýza MeSH
- estrogeny analýza MeSH
- monitorování životního prostředí * MeSH
- odpadní voda MeSH
- organické látky analýza MeSH
- pesticidy analýza MeSH
- polychlorované bifenyly analýza MeSH
- polychlorované dibenzodioxiny analýza MeSH
- polycyklické aromatické uhlovodíky analýza MeSH
- řeky chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Bosna a Hercegovina MeSH
- Názvy látek
- chemické látky znečišťující vodu MeSH
- dioxiny MeSH
- endokrinní disruptory MeSH
- estrogeny MeSH
- odpadní voda MeSH
- organické látky MeSH
- pesticidy MeSH
- polychlorované bifenyly MeSH
- polychlorované dibenzodioxiny MeSH
- polycyklické aromatické uhlovodíky MeSH
Organic contaminants, in particular persistent organic pollutants (POPs), adversely affect water quality and aquatic food webs across the globe. As of now, there is no globally consistent information available on concentrations of dissolved POPs in water bodies. The advance of passive sampling techniques has made it possible to establish a global monitoring program for these compounds in the waters of the world, which we call the Aquatic Global Passive Sampling (AQUA-GAPS) network. A recent expert meeting discussed the background, motivations, and strategic approaches of AQUA-GAPS, and its implementation as a network of networks for monitoring organic contaminants (e.g., POPs and others contaminants of concern). Initially, AQUA-GAPS will demonstrate its operating principle via two proof-of-concept studies focused on the detection of legacy and emerging POPs in freshwater and coastal marine sites using both polyethylene and silicone passive samplers. AQUA-GAPS is set up as a decentralized network, which is open to other participants from around the world to participate in deployments and to initiate new studies. In particular, participants are sought to initiate deployments and studies investigating the presence of legacy and emerging POPs in Africa, Central, and South America.
- MeSH
- chemické látky znečišťující vodu * MeSH
- kvalita vody MeSH
- lidé MeSH
- monitorování životního prostředí * MeSH
- sladká voda MeSH
- voda MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- voda MeSH
Pharmaceuticals (a class of emerging contaminants) are continuously introduced into effluent-receiving surface waters due to their incomplete removal within wastewater treatment plants (WWTPs). This work investigated the presence and distribution of eight commonly used human pharmaceuticals in the River Dee (Scotland, UK), a Scottish Environment Protection Agency priority catchment that is a conservation site and important raw water source. Grab sampling and passive sampling (Polar Organic Chemical Integrative Sampler, POCIS) was performed over 12 months, targeting: paracetamol, ibuprofen, and diclofenac (analgesics/anti-inflammatories); clarithromycin and trimethoprim (antibiotics); carbamazepine and fluoxetine (psychoactive drugs); and 17α-ethynylestradiol (estrogen hormone). Sampling sites spanned from the river's rural source to the heavily urbanised estuary into the North Sea. Ibuprofen (ranging 0.8-697 ng/L), paracetamol (ranging 4-658 ng/L), trimethoprim (ranging 3-505 ng/L), diclofenac (ranging 2-324 ng/L) and carbamazepine (ranging 1-222 ng/L) were consistently detected at the highest concentrations through grab sampling, with concentrations generally increasing down river with increasing urbanisation. However, POCIS revealed trace contamination of most compounds throughout the river (commonly <0.5 ng/L), indicating pollution may be related to diffuse sources. Analysis of river flows revealed that low flow and warm seasons corresponded to statistically significantly higher concentrations of diclofenac and carbamazepine, two compounds of environmental and regulatory concern. Below the largest WWTP, annual average fluxes ranged 0.1 kg/yr (clarithromycin) to 143.8 kg/yr (paracetamol), with 226.2 kg/yr for total target compounds. It was estimated that this source contributed >70% of the total mass loads (dissolved phase) of the target compounds in the river. As the River Dee is an important raw water source and conservation site, additional catchment monitoring is warranted to safeguard water quality and assess environmental risk of emerging contaminants, particularly in relation to unusual weather patterns, climate change and population growth.
- Klíčová slova
- Emerging contaminants, Passive sampling, Pollution, River flow, Wastewater, Water quality,
- MeSH
- chemické látky znečišťující vodu * analýza MeSH
- léčivé přípravky * MeSH
- lidé MeSH
- monitorování životního prostředí MeSH
- odpadní voda analýza MeSH
- řeky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Skotsko MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- léčivé přípravky * MeSH
- odpadní voda MeSH