Hydrogel-based passive sampler Dotaz Zobrazit nápovědu
Passive samplers based on diffusive gradients in thin hydrogel films (DGT) were recently modified for sampling of polar organic compounds in water. However, since the sampling rates of the commonly used DGT design with the surface area of 3.1 cm2 are low, we propose to increase them by applying a two-sided design with a larger sampling surface area of 22.7 cm2. The sampler design consists of two sorptive hydrogel disks compressed between two diffusive hydrogel disk layers strengthened by nylon netting and held together by two stainless steel rings. Sorbent/water distribution coefficients (KSW) were determined, and the sampler was calibrated for monitoring 11 perfluoroalkyl substances and 12 pharmaceuticals and personal care products in water at laboratory conditions using a closed system with artificial flow generated by submersible pumps. A field performance test was conducted at five locations in the Morava River basin in Czech Republic. The median value of laboratory-derived sampling rates was 43 mL day-1 with extreme values of 2 mL day-1 and 90 mL day-1 for perfluorotridecanoic and perfluoroheptanoic acids, respectively. The log KSW values of tested compounds ranged from 3.18 to 5.47 L kg-1, and the estimated halftime to attain sampler-water equilibrium ranged from 2 days to more than 28 days, which is the maximum recommended exposure period, considering potential issues with the stability of hydrogel. The sampler can be used for assessment of spatial trends as well as estimation of aqueous concentration of investigated polar compounds.
- Klíčová slova
- Diffusive gradients in thin films (DGT), Hydrogel, Passive sampling, Polar organic compounds, Water monitoring,
- MeSH
- chemické látky znečišťující vodu analýza MeSH
- difuze MeSH
- fluorokarbony chemie MeSH
- hydrogely chemie MeSH
- kyseliny heptylové chemie MeSH
- organické látky chemie MeSH
- řeky chemie MeSH
- sefarosa chemie MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- chemické látky znečišťující vodu MeSH
- fluorokarbony MeSH
- hydrogely MeSH
- kyseliny heptylové MeSH
- organické látky MeSH
- perfluoro-n-heptanoic acid MeSH Prohlížeč
- sefarosa MeSH
- voda MeSH
An upscaled passive sampler variant (diffusive hydrogel-based passive sampler; HPS) based on diffusive gradients in thin films for polar organic compounds (o-DGT) with seven times higher surface area (22.7 cm2) than a typical o-DGT sampler (3.14 cm2) was tested in several field studies. HPS performance was tested in situ within a calibration study in the treated effluent of a municipal wastewater treatment plant and in a verification study in the raw municipal wastewater influent. HPS sampled integratively for up to 14 days in the effluent, and 8 days in the influent. Sampling rates (Rs) were derived for 44 pharmaceuticals and personal care products, 3 perfluoroalkyl substances, 2 anticorrosives, and 21 pesticides and metabolites, ranging from 6 to 132 mL d-1. Robustness and repeatability of HPS deteriorated after exposures longer than 14 days due to microbial and physical damage of the diffusive agarose layer. In situ Rs values for the HPS can be applied to estimate the aqueous concentration of the calibrated polar organic compounds in wastewater within an uncertainty factor of four. When accepting this level of accuracy, the HPS can be applied for monitoring trends of organic micropollutants in wastewater.
- Klíčová slova
- Currently used pesticides, In situ calibration, Perfluoroalkyl substances, Pharmaceuticals, Sampling rate, o-DGT,
- Publikační typ
- časopisecké články MeSH
Aromatic amines (AAs) are human-made compounds known for their mutagenic properties, entering surface waters from various sources, often originating as transformation products of dyes or pesticides. Despite their low concentrations in surface waters, AAs can exhibit mutagenicity. Our study focused on evaluating three passive samplers (PSs) for enriching these compounds from influent and effluent of a wastewater treatment plant (WWTP) in Brno, Czech Republic. The PSs tested included variants containing AttractSPE™ SDB-RPS sorbent disk, one with and one without a diffusive agarose hydrogel layer, and a modified Speedisk (Bakerbond Speedisk® H2O-Philic). PSs were deployed in wastewater (WW) for one to four weeks in various overlapping combinations, and the uptake of AAs to PSs was compared to their concentrations in 24-hour composite water samples. A targeted LC/MS analysis covered 42 amines, detecting 11 and 13 AAs in daily composite influent and effluent samples, respectively. In the influent, AAs ranged from 1.5 ng L-1 for 1-anilinonaphthalene to 1.0 μg L-1 for aniline, and the highest concentration among all measured amines was observed for cyclohexylamine at 2.9 μg L-1. In the effluent, concentrations ranged from 0.5 ng L-1 for 1-anilinonaphthalene to 88 ng L-1 for o-anisidine. PSs demonstrated comparable accumulation of amines, with integrative uptake up to 28 days in both influent and effluent and detection of up to 23 and 27 amines in influent and effluent, respectively; altogether 34 compounds were detected in the study. Sampling rates (Rs) were estimated for compounds present in at least 50 % of the samples and showing <40 % aqueous concentration variability, with robustness evaluated by comparing values for compounds in WWTP influent and effluent. Although all devices performed similarly, hydrogel-based PS exhibited superior performance in several criteria, including time integration and robustness of sampling rates, making it a suitable monitoring tool for AAs in WW.
- Klíčová slova
- Hydrogel-based passive sampler, Removal efficiency, Sampling rate, Wastewater treatment, o-DGT,
- MeSH
- aminy * analýza MeSH
- chemické látky znečišťující vodu * analýza MeSH
- monitorování životního prostředí * metody MeSH
- odpad tekutý - odstraňování metody MeSH
- odpadní voda * chemie analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- aminy * MeSH
- chemické látky znečišťující vodu * MeSH
- odpadní voda * MeSH
Diffusive hydrogel-based passive sampler (HPS) based on diffusive gradients in thin films (DGT) is designed for monitoring polar organic contaminants in the aquatic environment. DGT technique controls the compound's overall uptake rate by adding a hydrogel layer of known thickness, which minimizes the importance of the resistive water boundary layer in the compound uptake process. In this work, we investigated several factors which may influence the diffusion of a range of aquatic contaminants in 1.5% agarose hydrogel. Diffusion in hydrogel was tested using the sheet stacking method. We demonstrated that a thin nylon netting incorporated into the diffusive hydrogel for mechanical strengthening does not significantly affect the diffusion of 11 perfluoroalkyl compounds. Further, we investigated the effect of pH in the range from 3 to 11 on the diffusion of a range of 39 aromatic amines (AAs) -36 aromatic, 2 aliphatic, and azobenzene in hydrogel. AAs were chosen as representatives of compounds with pH-dependent dissociation in water. Analysis of variance showed no significant difference in mean diffusion coefficient log D value at five pH values. The demonstration that the diffusion coefficient D and thus the sampling rate Rs are independent on pH simplifies the interpretation of data from field studies because we can neglect the influence of pH on the Rs. log D values (m2 s-1) of tested AAs ranged from to - 9.77 for 3,3'-dimethylbenzidine to - 9.19 for azobenzene. A negative correlation of log D with molar mass (log M) and molecular volume (log Vm) was observed (R = - 0.57 and - 0.56, respectively). The diffusion coefficient presents a critical parameter for the sampling rate estimation of HPS. Theoretical sampling rates Rs of AAs were calculated for a HPS using the average D values. Theoretical Rs values calculated for AAs at 22°C ranged from 29 mL day-1 for 3,3'-dimethylbenzidine to 106 mL day-1 for 2-aminopyridine. Our calculated values of Rs are in the same range as those already published for a range of low-molecular polar organic contaminants, which supports the possibility of deriving sampler performance parameters in the field from laboratory-derived diffusivity of analytes in hydrogel.
- Klíčová slova
- Aromatic amines, Diffusion, Hydrogel, Passive sampler, Perfluoroalkyl substances, Sampling rate,
- MeSH
- aminy MeSH
- azosloučeniny MeSH
- chemické látky znečišťující vodu * analýza MeSH
- difuze MeSH
- hydrogely * MeSH
- monitorování životního prostředí metody MeSH
- sefarosa MeSH
- voda analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 2-tolidine MeSH Prohlížeč
- aminy MeSH
- azobenzene MeSH Prohlížeč
- azosloučeniny MeSH
- chemické látky znečišťující vodu * MeSH
- hydrogely * MeSH
- sefarosa MeSH
- voda MeSH
The occurrence of chemical and biological contaminants of emerging concern (CECs) was investigated in treated wastewater intended for reuse in agriculture. An agarose hydrogel diffusion-based passive sampler was exposed to the outlet of a wastewater treatment plant (WWTP) located in Cyprus, which is equipped with membrane bioreactor (MBR). Passive samplers in triplicate were exposed according to a time-series exposure plan with maximum exposure duration of 28 days. Composite flow-proportional wastewater samples were collected in parallel with the passive sampling exposure plan and were processed by solid phase extraction using HORIZON SPE-DEX 4790 and the same sorbent material (Oasis HLB) as in the passive sampler. The analysis of passive samplers and wastewater samples enabled (i) the field-scale calibration of the passive sampler prototype by the calculation of in situ sampling rates of target substances, and (ii) the investigation of in silico predicted transformation products of the four most ecotoxicologically hazardous antibiotics (azithromycin, clarithromycin, erythromycin, ofloxacin). Additionally, the wastewater samples were subjected to the analysis of seven preselected antibiotic resistant genes (ARGs) and one mobile resistant element (int1). All extracts were analyzed for chemicals in a single batch using a highly sensitive method for pharmaceuticals, antibiotics and illicit drugs by liquid chromatography tandem MS/MS (LC-QQQ) and for various other target compounds (2316 compounds in total) by liquid chromatography high-resolution mass spectrometry (LC-HRMS). 279 CECs and all investigated ARGs (except for blaCTX-M-32) were detected, highlighting potential chemical and biological hazards related to wastewater reuse practices. 16 CECs were prioritized following ecotoxicological risk assessment, whereas sul1 and the mobile resistant element (int1) showed the highest abundance. Comprehensive monitoring efforts using novel sampling methods such as passive sampling, wide-scope target screening and molecular analysis are required to assure safe application of wastewater reuse and avoid spread and crop uptake of potentially hazardous chemicals.
- Klíčová slova
- Antibiotic resistance genes, Antibiotics, Contaminants of emerging concern, Hydrogel-based passive sampler, Transformation products, Wastewater reuse,
- MeSH
- chemické látky znečišťující vodu * analýza MeSH
- monitorování životního prostředí MeSH
- odpadní voda * MeSH
- tandemová hmotnostní spektrometrie MeSH
- zemědělství MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chemické látky znečišťující vodu * MeSH
- odpadní voda * MeSH
Over the past decades, several types of passive samplers have been developed and used to monitor polar organic compounds in aquatic environments. These samplers use different sorbents and barriers to control the uptake into the sampler, but their performance comparison is usually not well investigated. This study aimed to directly compare the performance of three samplers, i.e., the Polar Organic Chemical Integrative Sampler (POCIS), the Hydrogel-based Passive Sampler (HPS, an upscaled version of o-DGT), and the Speedisk, on a diverse suite of pharmaceuticals, per- and polyfluoroalkylated substances (PFAS), and pesticides and their metabolites. The samplers were deployed side-by-side in the treated effluent of a municipal wastewater treatment plant for different exposure times. All samplers accumulated a comparable number of compounds, and integrative uptake was observed for most compounds detected up to 28 days for POCIS, up to 14 days for HPS, and up to 42 days for Speedisk. In the integrative uptake phase, consistent surface-specific uptake was observed with a significant correlation between samplers (r ≥ 0.76) despite differences in sampler construction, diffusion barrier, and sorbent material used. The low sampling rates compared to the literature and the low estimated overall mass transfer coefficient suggests that the water boundary layer was the main barrier controlling the uptake for all samplers. Although all devices provided comparable performance, Speedisk overcomes POCIS and HPS in several criteria, including time-integrative sampling over a long period and physical durability.
- Klíčová slova
- Mass transfer, O-DGT, POCIS, Pesticides, Pharmaceuticals, Speedisk,
- Publikační typ
- časopisecké články MeSH