Copy number variation (CNV) Dotaz Zobrazit nápovědu
We evaluated copy number variation (CNV) for four genes in rat strains differing in nervous system excitability. rpl13a copy number is significantly reduced in hippocampus and bone marrow in rats with a high excitability threshold and stress. The observed phenomenon may be associated with a role for rpl13a in lipid metabolism.
- Klíčová slova
- Bone marrow, Copy number variation (CNV), Hippocampus, Nervous system excitability, Quantitative real-time multicolor multiplex PCR (qmPCR), Rat,
- MeSH
- hipokampus metabolismus fyziologie MeSH
- kortikální excitabilita genetika fyziologie MeSH
- kostní dřeň metabolismus fyziologie MeSH
- krysa rodu Rattus MeSH
- nervový systém - fyziologické jevy genetika MeSH
- ribozomální proteiny genetika MeSH
- variabilita počtu kopií segmentů DNA genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ribozomální proteiny MeSH
- Rpl13a protein, rat MeSH Prohlížeč
The genetic correlates of extreme impulsive violence are poorly understood, and there have been no studies that have systematically characterized a large group of affected individuals both clinically and genetically. We performed a genome-wide rare copy number variant (CNV) analysis in 281 males from four Czech prisons who met strict clinical criteria for extreme impulsive violence. Inclusion criteria included age ≥ 18 years, an ICD-10 diagnosis of Dissocial Personality Disorder, and the absence of an organic brain disorder. Participants underwent a structured psychiatric assessment to diagnose extreme impulsive violence and then provided a blood sample for genetic analysis. DNA was genotyped and CNVs were identified using Illumina HumanOmni2.5 single-nucleotide polymorphism array platform. Comparing with 10851 external population controls, we identified 828 rare CNVs (frequency ≤ 0.1% among control samples) in 264 participants. The CNVs impacted 754 genes, with 124 genes impacted more than once (2-25 times). Many of these genes are associated with autosomal dominant or X-linked disorders affecting adult behavior, cognition, learning, intelligence, specifically expressed in the brain and relevant to synapses, neurodevelopment, neurodegeneration, obesity and neuropsychiatric phenotypes. Specifically, we identified 31 CNVs of clinical relevance in 31 individuals, 59 likely clinically relevant CNVs in 49 individuals, and 17 recurrent CNVs in 65 individuals. Thus, 123 of 281 (44%) individuals had one to several rare CNVs that were indirectly or directly relevant to impulsive violence. Extreme impulsive violence is genetically heterogeneous and genomic analysis is likely required to identify, further research and specifically treat the causes in affected individuals.
- Klíčová slova
- antisocial personality disorder, copy number variation, dissocial personality disorder, genetics, impulsive violence, rare variants,
- MeSH
- asociální osobnost genetika MeSH
- dospělí MeSH
- impulzivní chování * MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- násilí * MeSH
- senioři MeSH
- variabilita počtu kopií segmentů DNA * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Giardiasis, caused by the protozoan parasite Giardia intestinalis, often presents a treatment challenge, particularly in terms of resistance to metronidazole. Despite extensive research, markers for metronidazole resistance have not yet been identified. METHODS: This study analysed 28 clinical samples of G. intestinalis from sub-assemblage AII, characterised by varying responses to metronidazole treatment. We focussed on copy number variation (CNV) of the multi-copy flavohemoprotein gene, analysed using digital polymerase chain reaction (dPCR) and next generation sequencing (NGS). Additionally, chromosomal ploidy was tested in 18 of these samples. Flavohemoprotein CNV was also assessed in 17 samples from other sub-assemblages. RESULTS: Analyses revealed variable CNVs of the flavohemoprotein gene among the isolates, with no correlation to clinical metronidazole resistance. Discrepancies in CNVs detected from NGS data were attributed to biases linked to the whole genome amplification. However, dPCR helped to clarify these discrepancies by providing more consistent CNV data. Significant differences in flavohemoprotein CNVs were observed across different G. intestinalis sub-assemblages. Notably, Giardia exhibits a propensity for aneuploidy, contributing to genomic variability within and between sub-assemblages. CONCLUSIONS: The complexity of the clinical metronidazole resistance in Giardia is influenced by multiple genetic factors, including CNVs and aneuploidy. No significant differences in the CNV of the flavohemoprotein gene between isolates from metronidazole-resistant and metronidazole-sensitive cases of giardiasis were found, underscoring the need for further research to identify reliable genetic markers for resistance. We demonstrate that dPCR and NGS are robust methods for analysing CNVs and provide cross-validating results, highlighting their utility in the genetic analyses of this parasite.
- Klíčová slova
- Giardia intestinalis, Aneuploidy, Chromosomes, Copy number variation, Digital PCR, Flavohemoglobin, Flavohemoprotein, Metronidazole,
- MeSH
- antiprotozoální látky * farmakologie MeSH
- Giardia lamblia * genetika účinky léků MeSH
- giardiáza * parazitologie farmakoterapie MeSH
- léková rezistence * genetika MeSH
- lidé MeSH
- metronidazol * farmakologie MeSH
- protozoální proteiny genetika MeSH
- variabilita počtu kopií segmentů DNA * MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiprotozoální látky * MeSH
- metronidazol * MeSH
- protozoální proteiny MeSH
BACKGROUND: The incidence of squamous cell carcinoma of the oral tongue (SCCOT) is increasing in people under age 40. There is an urgent need to identify prognostic markers that help identify young SCCOT patients with poor prognosis in order to select these for individualized treatment. MATERIALS AND METHODS: To identify genetic markers that can serve as prognostic markers for young SCCOT patients, we first investigated four young (≤40 years) and five elderly patients (≥50 years) using global RNA sequencing and whole-exome sequencing. Next, we combined our data with data on SCCOT from the cancer genome atlas (TCGA), giving a total of 16 young and 104 elderly, to explore the correlations between genomic variations and clinical outcomes. RESULTS: In agreement with previous studies, we found that SCCOT from young and elderly patients was transcriptomically and also genomically similar with no significant differences regarding cancer driver genes, germline predisposition genes, or the burden of somatic single nucleotide variations (SNVs). However, a disparate copy number variation (CNV) was found in young patients with distinct clinical outcome. Combined with data from TCGA, we found that the overall survival was significantly better in young patients with low-CNV (n = 5) compared to high-CNV (n = 11) burden (P = 0.044). CONCLUSIONS: Copy number variation burden is a useful single prognostic marker for SCCOT from young, but not elderly, patients. CNV burden thus holds promise to form an important contribution when selecting suitable treatment protocols for young patients with SCCOT.
- Klíčová slova
- age, copy number variation, prognosis, squamous cell carcinoma of the oral tongue, whole-exome sequencing,
- MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- míra přežití MeSH
- mladý dospělý MeSH
- nádorové biomarkery * MeSH
- nádory jazyka diagnóza genetika mortalita MeSH
- prognóza MeSH
- sekvenování exomu MeSH
- senioři MeSH
- spinocelulární karcinom diagnóza genetika mortalita MeSH
- variabilita počtu kopií segmentů DNA * MeSH
- věkové faktory MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- nádorové biomarkery * MeSH
The identification of sex in larvae of insects is usually challenging or even impossible, while in adults the sexual dimorphism is usually evident. Here, we used copy number analysis to develop a method of sex detection in Colorado potato beetle (Leptinotarsa decemlineata), which has an X0 sex determination system. The X linked gene LdVssc and autosomal gene LdUBE3B were identified as appropriate target and reference loci, respectively. The copy numbers (CNV) of LdVssc in males and females were estimated using standard droplet digital PCR (ddPCR) and real-time PCR (qPCR). With both methods, CNVs were bimodally distributed (BAddPCR = 0.709 and BAqPCR = 0.683) with 100% ability to distinguish females from males. The use of qPCR-based sex detection in a broad collection of 448 random CPB adults showed a perfect association (Phi = 1.0, p < 0.05) with the true sexes of adults, with mean CNV in females of 2.032 (SD = 0.227) and 0.989 in males (SD = 0.147). In the collection of 50 random 4th instar larvae, 27 females and 23 males were identified, consistent with the expected 1:1 sex ratio (p = 0.689). The method is suitable for sexing in all stages of ontogenesis. The optimal cost-effective application of the method in large populations requires the DNA extraction using CTAB, the qPCR assay in one biological replicate and three technical replicates of each marker, and the use of one randomly chosen male per run to calibrate calculation of CNV.
- MeSH
- brouci * genetika MeSH
- larva genetika MeSH
- Solanum tuberosum * MeSH
- variabilita počtu kopií segmentů DNA MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Colorado MeSH
Discovering copy number variation (CNV) in bacteria is not in the spotlight compared to the attention focused on CNV detection in eukaryotes. However, challenges arising from bacterial drug resistance bring further interest to the topic of CNV and its role in drug resistance. General CNV detection methods do not consider bacteria's features and there is space to improve detection accuracy. Here, we present a CNV detection method called CNproScan focused on bacterial genomes. CNproScan implements a hybrid approach and other bacteria-focused features and depends only on NGS data. We benchmarked our method and compared it to the previously published methods and we can resolve to achieve a higher detection rate together with providing other beneficial features, such as CNV classification. Compared with other methods, CNproScan can detect much shorter CNV events.
Transcriptome sequencing (RNA-seq) is widely used to detect gene rearrangements and quantitate gene expression in acute lymphoblastic leukemia (ALL), but its utility and accuracy in identifying copy number variations (CNVs) has not been well described. CNV information inferred from RNA-seq can be highly informative to guide disease classification and risk stratification in ALL due to the high incidence of aneuploid subtypes within this disease. Here we describe RNAseqCNV, a method to detect large scale CNVs from RNA-seq data. We used models based on normalized gene expression and minor allele frequency to classify arm level CNVs with high accuracy in ALL (99.1% overall and 98.3% for non-diploid chromosome arms, respectively), and the models were further validated with excellent performance in acute myeloid leukemia (accuracy 99.8% overall and 99.4% for non-diploid chromosome arms). RNAseqCNV outperforms alternative RNA-seq based algorithms in calling CNVs in the ALL dataset, especially in samples with a high proportion of CNVs. The CNV calls were highly concordant with DNA-based CNV results and more reliable than conventional cytogenetic-based karyotypes. RNAseqCNV provides a method to robustly identify copy number alterations in the absence of DNA-based analyses, further enhancing the utility of RNA-seq to classify ALL subtype.
- MeSH
- algoritmy MeSH
- karyotypizace MeSH
- lidé MeSH
- sekvenování transkriptomu MeSH
- variabilita počtu kopií segmentů DNA * genetika MeSH
- vysoce účinné nukleotidové sekvenování * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: Despite bevacizumab being the first biological agent approved for the treatment of metastatic colorectal cancer (mCRC), there is not any established DNA biomarker to improve its efficacy and personalize the treatment. MATERIALS AND METHODS: Thirty patients with mCRC on bevacizumab therapy (15 with a good response and 15 with a poor response) from the University Hospital Olomouc were followed. Formalin-fixed paraffin-embedded (FFPE) samples were used for copy number variation (CNV) analysis using the OncoScan FFPE Assay Kit in order to capture approx. 900 tumor genes. RESULTS: In the group of good responding patients, 102 genes (classified as ATPases, type AAA, neuronal signal transmission, regulation of transcription, and superior domain PH type), potentially significant positive predictive tumor biomarkers of bevacizumab treatment, were found. In the poorly responding group, 74 potentially negative predictive genes (classified as galectines, Jak-STAT signalling pathway, MAPK cascade, differentiation, and F-box associated domain) were identified. CONCLUSION: In the pilot study, we found promising copy number variation biomarkers of bevacizumab response in FFPE samples of mCRC patients. The validation phase should be focused especially on the genes associated with angiogenesis (AGRN, MAPK8, ARHGAP22, LGALS13, LGALS4, ZFP36, and MYC), tumorigenesis (DVL1), and tumor proliferation (IFNL1, IFNL2, IFNL3, MAP3K10, and MAP4K1).
- Klíčová slova
- bevacizumab, colorectal cancer, colorectal carcinoma, structural genetic variation,
- MeSH
- bevacizumab * terapeutické užití MeSH
- kolorektální nádory * farmakoterapie genetika patologie MeSH
- lidé MeSH
- metastázy nádorů MeSH
- nádorové biomarkery * genetika MeSH
- pilotní projekty MeSH
- protinádorové látky imunologicky aktivní terapeutické užití MeSH
- protokoly antitumorózní kombinované chemoterapie terapeutické užití MeSH
- variabilita počtu kopií segmentů DNA * MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- bevacizumab * MeSH
- nádorové biomarkery * MeSH
- protinádorové látky imunologicky aktivní MeSH
OBJECTIVES: The term "copy number variation/variant" (CNV) denotes a DNA sequence with a magnitude of 1 kb at least which is differently represented among individuals based on its deletion or duplication. Since 2008, multiple studies have reported copy number variations in schizophrenia, and they seem to fill in a gap in our knowledge on the genetic background of schizophrenia. The aim of this review is to sum up the current findings related to CNVs in schizophrenia in order to facilitate further research. METHODS: We searched the PubMed computer database using the key words "schizophrenia AND CNVs" on 26th October 2011. Out of 91 obtained results, we selected the references based on their relevance. RESULTS: The CNVs at genome loci 1q21.1, 2p16.3, 3q29, 15q11.2, 15q13.3, 16p13.1 and 22q11.2 were associated with schizophrenia most frequently. The data provide evidence for low prevalent, but highly penetrant CNVs associated with schizophrenia. CNV deletions show higher penetrance than duplications. Larger CNVs often have higher penetrance than smaller CNVs. Although the vast majority of CNVs are inherited, CNVs that have newly occurred as de novo mutations have more readily been implicated in schizophrenia. De novo CNVs may be responsible for the presence of schizophrenia in only one of the two monozygotic twins, who otherwise have identical genomes. CONCLUSION: Identifying CNVs in schizophrenia can lead to changes in the treatment and genetic counselling. Our knowledge on the genetic background of neurodevelopmental disorders may also reduce stigma in schizophrenia.
- MeSH
- celogenomová asociační studie statistika a číselné údaje MeSH
- genetická predispozice k nemoci genetika MeSH
- genom lidský genetika MeSH
- lidé MeSH
- schizofrenie genetika MeSH
- variabilita počtu kopií segmentů DNA genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
INTRODUCTION: Next-generation sequencing is now used on a routine basis for molecular testing but studies on copy-number variant (CNV) detection from next-generation sequencing data are underrepresented. Utilizing an existing whole-exome sequencing (WES) dataset, we sought to investigate the contribution of rare CNVs to the genetic causality of dystonia. METHODS: The CNV read-depth analysis tool ExomeDepth was applied to the exome sequences of 953 unrelated patients with dystonia (600 with isolated dystonia and 353 with combined dystonia; 33% with additional neurological involvement). We prioritized rare CNVs that affected known disease genes and/or were known to be associated with defined microdeletion/microduplication syndromes. Pathogenicity assessment of CNVs was based on recently published standards of the American College of Medical Genetics and Genomics and the Clinical Genome Resource. RESULTS: We identified pathogenic or likely pathogenic CNVs in 14 of 953 patients (1.5%). Of the 14 different CNVs, 12 were deletions and 2 were duplications, ranging in predicted size from 124bp to 17 Mb. Within the deletion intervals, BRPF1, CHD8, DJ1, EFTUD2, FGF14, GCH1, PANK2, SGCE, UBE3A, VPS16, WARS2, and WDR45 were determined as the most clinically relevant genes. The duplications involved chromosomal regions 6q21-q22 and 15q11-q13. CNV analysis increased the diagnostic yield in the total cohort from 18.4% to 19.8%, as compared to the assessment of single-nucleotide variants and small insertions and deletions alone. CONCLUSIONS: WES-based CNV analysis in dystonia is feasible, increases the diagnostic yield, and should be combined with the assessment of single-nucleotide variants and small insertions and deletions.
- Klíčová slova
- Copy-number variant, Diagnostic yield, Dystonia, Read-depth analysis,
- MeSH
- dospělí MeSH
- dystonické poruchy diagnóza genetika MeSH
- dystonie diagnóza genetika MeSH
- kohortové studie MeSH
- lidé MeSH
- sekvenování exomu * MeSH
- variabilita počtu kopií segmentů DNA * genetika MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH