Finite elements Dotaz Zobrazit nápovědu
This study investigated the effect of implant thickness and material on deformation and stress distribution within different components of cranial implant assemblies. Using the finite element method, two cranial implants, differing in size and shape, and thicknesses (1, 2, 3 and 4 mm, respectively), were simulated under three loading scenarios. The implant assembly model included the detailed geometries of the mini-plates and micro-screws and was simulated using a sub-modeling approach. Statistical assessments based on the Design of Experiment methodology and on multiple regression analysis revealed that peak stresses in the components are influenced primarily by implant thickness, while the effect of implant material is secondary. On the contrary, the implant deflection is influenced predominantly by implant material followed by implant thickness. The highest values of deformation under a 50 N load were observed in the thinnest (1 mm) Polymethyl Methacrylate implant (Small defect: 0.296 mm; Large defect: 0.390 mm). The thinnest Polymethyl Methacrylate and Polyether Ether Ketone implants also generated stresses in the implants that can potentially breach the materials' yield limit. In terms of stress distribution, the change of implant thickness had a more significant impact on the implant performance than the change of Young's modulus of the implant material. The results indicated that the stresses are concentrated in the locations of fixation; therefore, the detailed models of mini-plates and micro-screws implemented in the finite element simulation provided a better insight into the mechanical performance of the implant-skull system.
- Klíčová slova
- 3D printing, Cranioplasty, Finite element method, Mechanical properties, Skull implant,
- MeSH
- analýza metodou konečných prvků * MeSH
- experimentální implantáty * MeSH
- lebka * MeSH
- lidé MeSH
- mechanický stres * MeSH
- počítačová simulace * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Biomechanical models based on the finite element method have already shown their potential in the simulation of the mechanical behaviour of cells. For instance, development of atherosclerosis is accelerated by damage of the endothelium, a monolayer of endothelial cells on the inner surface of arteries. Finite element models enable us to investigate mechanical factors not only at the level of the arterial wall but also at the level of individual cells. To achieve this, several finite element models of endothelial cells with different shapes are presented in this paper. Implementing the recently proposed bendotensegrity concept, these models consider the flexural behaviour of microtubules and incorporate also waviness of intermediate filaments. The suspended and adherent cell models are validated by comparison of their simulated force-deformation curves with experiments from the literature. The flat and dome cell models, mimicking natural cell shapes inside the endothelial layer, are then used to simulate their response in compression and shear which represent typical loads in a vascular wall. The models enable us to analyse the role of individual cytoskeletal components in the mechanical responses, as well as to quantify the nucleus deformation which is hypothesized to be the quantity decisive for mechanotransduction.
Mechanical interaction of cell with extracellular environment affects its function. The mechanisms by which mechanical stimuli are sensed and transduced into biochemical responses are still not well understood. Considering this, two finite element (FE) bendo-tensegrity models of a cell in different states are proposed with the aim to characterize cell deformation under different mechanical loading conditions: a suspended cell model elucidating the global response of cell in tensile test simulation and an adherent cell model explicating its local response in atomic force microscopy (AFM) indentation simulation. The force-elongation curve obtained from tensile test simulation lies within the range of experimentally obtained characteristics of smooth muscle cells (SMCs) and illustrates a nonlinear increase in reaction force with cell stretching. The force-indentation curves obtained from indentation simulations lie within the range of experimentally obtained curves of embryonic stem cells (ESCs) and exhibit the influence of indentation site on the overall reaction force of cell. Simulation results have demonstrated that actin filaments (AFs) and microtubules (MTs) play a crucial role in the cell stiffness during stretching, whereas actin cortex (AC) along with actin bundles (ABs) and MTs are essential for the cell rigidity during indentation. The proposed models quantify the mechanical contribution of individual cytoskeletal components to cell mechanics and the deformation of nucleus under different mechanical loading conditions. These results can aid in better understanding of structure-function relationships in living cells.
- MeSH
- analýza metodou konečných prvků * MeSH
- biologické modely * MeSH
- biomechanika MeSH
- cytoskelet metabolismus MeSH
- eukaryotické buňky cytologie metabolismus MeSH
- mechanické jevy * MeSH
- mikrofilamenta metabolismus MeSH
- mikrotubuly metabolismus MeSH
- pevnost v tahu MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A three-dimensional finite element model of a vascular smooth muscle cell is based on models published recently; it comprehends elements representing cell membrane, cytoplasm and nucleus, and a complex tensegrity structure representing the cytoskeleton. In contrast to previous models of eucaryotic cells, this tensegrity structure consists of several parts. Its external and internal parts number 30 struts, 60 cables each, and their nodes are interconnected by 30 radial members; these parts represent cortical, nuclear and deep cytoskeletons, respectively. This arrangement enables us to simulate load transmission from the extracellular space to the nucleus or centrosome via membrane receptors (focal adhesions); the ability of the model was tested by simulation of some mechanical tests with isolated vascular smooth muscle cells. Although material properties of components defined on the basis of the mechanical tests are ambiguous, modelling of different types of tests has shown the ability of the model to simulate substantial global features of cell behaviour, e.g. "action at a distance effect" or the global load-deformation response of the cell under various types of loading. Based on computational simulations, the authors offer a hypothesis explaining the scatter of experimental results of indentation tests.
- MeSH
- analýza metodou konečných prvků MeSH
- biologické modely * MeSH
- buněčný převod mechanických signálů fyziologie MeSH
- cytoskelet MeSH
- lidé MeSH
- mechanický stres MeSH
- myocyty hladké svaloviny chemie cytologie fyziologie MeSH
- počítačová simulace MeSH
- svaly hladké cévní chemie cytologie fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Dental implant dimensions, and bone quality and quantity play a key role in early osseointegration and long-term prognosis in posterior edentulous maxilla. Treatment with short implants, preferably in a bicortical manner, is an accepted modality; however, short implants have limitations leading to increased stress concentrations in alveolar bone, potential overload and implant failure. Implant models of 3.3, 4.1, 4.8 and 5.4 mm diameter and 4.5, 5.5, 6.5, 7.5 and 8.5 mm length were placed in posterior maxilla 3-D models with corresponding residual bone heights. Bone-implant assemblies were analyzed in finite element software ANSYS 15. All materials were assumed to be linearly elastic and isotropic. 118.2 N oblique loading was applied to investigate stress distributions in bone tissues. The concept of ultimate functional load (UFL) was selected as a criterion to compare load-carrying capacity of implants and to evaluate the influence of available bone height and implant dimensions on load-carrying capacity. For all implants, UFL was calculated by limiting von Mises stresses in cortical or cancellous bone with bone strength (100 MPa for cortical and 2 MPa for cancellous bone). Implant load-carrying capacity depends on diameter and available bone height. Wide implants have higher load-carrying capacity than narrow implants. Short implants with proper diameter and length avoid bone overstress, even in Type IV bone.
- Klíčová slova
- Finite element analysis, Posterior maxilla, Short implant,
- MeSH
- analýza metodou konečných prvků * MeSH
- lidé MeSH
- maxila * fyziologie MeSH
- osteointegrace MeSH
- testování materiálů * MeSH
- zatížení muskuloskeletálního systému MeSH
- zubní implantáty * MeSH
- zubní protéza - design MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- zubní implantáty * MeSH
The finite element analysis (FEA) has been identified as a useful tool for the stress and strain behaviour determination in lower limb prosthetics. The residual limb and prosthetic socket interface was the main subject of interest in previous studies. This paper focuses on the finite element analysis for the evaluation of structural behaviour of the Sure-flex™ prosthetic foot and other load-bearing components. A prosthetic socket was not included in the FEA. An approach for the finite element modelling including foot analysis, reverse engineering and material property testing was used. The foot analysis incorporated ground reaction forces measurement, motion analysis and strain gauge analysis. For the material model determination, non-destructive laboratory testing and its FE simulation was used. A new, realistic way of load application is presented along with a detailed investigation of stress distribution in the load-bearing components of the prosthesis. A novel approach for numerical and experimental agreement determination was introduced. This showed differences in the strain on the pylon between the experimental and the numerical model within 30% for the anteroposterior bending and up to 25% for the compression. The highest von Mises stresses were found on the foot-pylon connecting component at toe off. Peak stress of 216MPa occurred on the posterior adjusting screw and maximum stress of 156MPa was found at the neck of the male pyramid.
- MeSH
- amputovaní * MeSH
- analýza metodou konečných prvků * MeSH
- dospělí MeSH
- lidé MeSH
- mechanický stres MeSH
- protézy - design MeSH
- protézy a implantáty * MeSH
- tibie * MeSH
- zatížení muskuloskeletálního systému MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
INTRODUCTION AND HYPOTHESIS: Several studies have assessed birth-related deformations of the levator ani muscle (LAM) and perineum on models that depicted these elements in isolation. The main aim of this study was to develop a complex female pelvic floor computational model using the finite element method to evaluate points and timing of maximum stress at the LAM and perineum in relation to the birth process. METHODS: A three-dimensional computational model of the female pelvic floor was created and used to simulate vaginal birth based on data from previously described real-life MRI scans. We developed three models: model A (LAM without perineum); model B (perineum without LAM); model C (a combined model with both structures). RESULTS: The maximum stress in the LAM was achieved when the vertex was 9 cm below the ischial spines and measured 37.3 MPa in model A and 88.7 MPa in model C. The maximum stress in the perineum occurred at the time of distension by the suboocipito-frontal diameter and reached 86.7 MPa and 119.6 MPa in models B and C, respectively, while the stress in the posterior fourchette caused by the suboccipito-bregmatic diameter measured 36.9 MPa for model B and 39.8 MPa for model C. CONCLUSIONS: Including perineal structures in a computational birth model simulation affects the level of stress at the LAM. The maximum stress at the LAM and perineum seems to occur when the head is lower than previously anticipated.
- Klíčová slova
- Birth, Delivery, Levator, Modeling, Muscle, Partum, Perineal, Stress, Tension,
- MeSH
- analýza metodou konečných prvků MeSH
- lidé MeSH
- pánevní dno * diagnostické zobrazování MeSH
- perineum MeSH
- těhotenství MeSH
- vedení porodu * MeSH
- zubní porcelán MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- finesse MeSH Prohlížeč
- zubní porcelán MeSH
Classical singers use nasal consonants as "resonance exercises," and experimental results have shown that singers may use some velopharyngeal opening (VPO), most often in [a:] and more seldom in [i:] or [u:]. In particular, male singers have been found to increase VPO as pitch rises toward register change frequencies (passaggi). Laryngoscopic findings have shown that some VPO stabilizes vocal fold vibration; the effect is related to positive reactance. This study investigates the effects of VPO on vocal tract (VT) reactance over the range of fundamental frequencies (f0) used in singing using a computerized tomography-based finite element model of the VT and nose of a female. According to the results, by raising the lowest VT resonances, the VPO increased the VT reactance in the frequency ranges 207-359 Hz for [i:], 265-411 Hz for [u:], and 500-611 Hz for [a:], depending on the VPO size (full or half VPO). These frequency ranges are close to the first and second passaggio of a female singer. The change may have an especially practical stabilizing effect for [a:], which is otherwise characterized by very large changes in VT reactance and negative reactance at the second passaggio.
PURPOSE OF THE STUDY In this study, our aim is to examine the effect of proximal fibular osteotomy on knee and ankle kinematics with finite element analysis method. MATERIAL AND METHODS One 62-year-old, female volunteer's radiologic images were used for creating lower limb model. Osteotomized model (OM) which was created according to definition of PFO and non-osteotomized model (NOM) were created. To obtain a stress distribution comparison between the two models, 350 N of axial force was applied to the femoral heads of the models. RESULTS After PFO, the average contact pressure decreased 26.1% at the medial tibial cartilage and increased 42.4% at the lateral tibial cartilage. The Von Mises stresses decreased 57.1% at the femoral cartilage and decreased 79.1% at tibial cartilage. The stress on the tibial cartilage increased 44.6%, and stress on the talar cartilage increased 7.1% at the ankle joint. CONCLUSIONS FEA revealed that main loading at the knee joint shifted from medial tibial cartilage to the lateral tibial cartilage after PFO. Additionally, the stresses on each cartilage were redistributed across a wider and more peripheral area. FEA also demonstrated that the Von Mises stresses of the tibial and talar cartilages of the ankle joint increased after PFO. Key words: knee pain, osteoarthritis, osteotomy, finite element analysis, axial loadings.
- MeSH
- analýza metodou konečných prvků MeSH
- biomechanika MeSH
- hlezenní kloub * diagnostické zobrazování chirurgie MeSH
- kolenní kloub * diagnostické zobrazování chirurgie MeSH
- lidé MeSH
- mechanický stres MeSH
- osteotomie MeSH
- tibie diagnostické zobrazování chirurgie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The aim of this paper was to design a finite element model for a hinged PROSPON oncological knee endoprosthesis and to verify the model by comparison with ankle flexion angle using knee-bending experimental data obtained previously. METHOD: Visible Human Project CT scans were used to create a general lower extremity bones model and to compose a 3D CAD knee joint model to which muscles and ligaments were added. Into the assembly the designed finite element PROSPON prosthesis model was integrated and an analysis focused on the PEEK-OPTIMA hinge pin bushing stress state was carried out. To confirm the stress state analysis results, contact pressure was investigated. The analysis was performed in the knee-bending position within 15.4-69.4° hip joint flexion range. RESULTS: The results showed that the maximum stress achieved during the analysis (46.6 MPa) did not exceed the yield strength of the material (90 MPa); the condition of plastic stability was therefore met. The stress state analysis results were confirmed by the distribution of contact pressure during knee-bending. CONCLUSION: The applicability of our designed finite element model for the real implant behaviour prediction was proven on the basis of good correlation of the analytical and experimental ankle flexion angle data.
- Klíčová slova
- Endoprosthesis, Finite element method, Finite element model, Knee joint, Knee-bending, Oncological implant,
- MeSH
- algoritmy MeSH
- analýza metodou konečných prvků MeSH
- analýza selhání vybavení MeSH
- biologické modely * MeSH
- design s pomocí počítače MeSH
- kolenní kloub patofyziologie MeSH
- kosterní svaly patofyziologie MeSH
- lidé MeSH
- mechanický stres MeSH
- modul pružnosti MeSH
- nádory kostí patofyziologie chirurgie MeSH
- pevnost v tahu MeSH
- pevnost v tlaku MeSH
- počítačová simulace MeSH
- protetické vybavení metody MeSH
- protézy - design MeSH
- protézy kolene * MeSH
- šlachy patofyziologie MeSH
- software MeSH
- svalová kontrakce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- validační studie MeSH