Deepfake (DF) is a kind of forged image or video that is developed to spread misinformation and facilitate vulnerabilities to privacy hacking and truth masking with advanced technologies, including deep learning and artificial intelligence with trained algorithms. This kind of multimedia manipulation, such as changing facial expressions or speech, can be used for a variety of purposes to spread misinformation or exploitation. This kind of multimedia manipulation, such as changing facial expressions or speech, can be used for a variety of purposes to spread misinformation or exploitation. With the recent advancement of generative adversarial networks (GANs) in deep learning models, DF has become an essential part of social media. To detect forged video and images, numerous methods have been developed, and those methods are focused on a particular domain and obsolete in the case of new attacks/threats. Hence, a novel method needs to be developed to tackle new attacks. The method introduced in this article can detect various types of spoofs of images and videos that are computationally generated using deep learning models, such as variants of long short-term memory and convolutional neural networks. The first phase of this proposed work extracts the feature frames from the forged video/image using a sparse autoencoder with a graph long short-term memory (SAE-GLSTM) method at training time. The first phase of this proposed work extracts the feature frames from the forged video/image using a sparse autoencoder with a graph long short-term memory (SAE-GLSTM) method at training time. The proposed DF detection model is tested using the FFHQ database, 100K-Faces, Celeb-DF (V2) and WildDeepfake. The evaluated results show the effectiveness of the proposed method.
- Keywords
- Capsule convolution neural network, Deep learning, DeepFake, Generative adversarial networks, Graph LSTM, Long short term memory (LSTM),
- Publication type
- Journal Article MeSH
The first known case of Coronavirus disease 2019 (COVID-19) was identified in December 2019. It has spread worldwide, leading to an ongoing pandemic, imposed restrictions and costs to many countries. Predicting the number of new cases and deaths during this period can be a useful step in predicting the costs and facilities required in the future. The purpose of this study is to predict new cases and deaths rate one, three and seven-day ahead during the next 100 days. The motivation for predicting every n days (instead of just every day) is the investigation of the possibility of computational cost reduction and still achieving reasonable performance. Such a scenario may be encountered in real-time forecasting of time series. Six different deep learning methods are examined on the data adopted from the WHO website. Three methods are LSTM, Convolutional LSTM, and GRU. The bidirectional extension is then considered for each method to forecast the rate of new cases and new deaths in Australia and Iran countries. This study is novel as it carries out a comprehensive evaluation of the aforementioned three deep learning methods and their bidirectional extensions to perform prediction on COVID-19 new cases and new death rate time series. To the best of our knowledge, this is the first time that Bi-GRU and Bi-Conv-LSTM models are used for prediction on COVID-19 new cases and new deaths time series. The evaluation of the methods is presented in the form of graphs and Friedman statistical test. The results show that the bidirectional models have lower errors than other models. A several error evaluation metrics are presented to compare all models, and finally, the superiority of bidirectional methods is determined. This research could be useful for organisations working against COVID-19 and determining their long-term plans.
- Keywords
- ANFIS, Adaptive Network-based Fuzzy Inference System, ANN, Artificial Neural Network, AU, Australia, Bi-Conv-LSTM, Bidirectional Convolutional Long Short Term Memory, Bi-GRU, Bidirectional Gated Recurrent Unit, Bi-LSTM, Bidirectional Long Short-Term Memory, Bidirectional, COVID-19 Prediction, COVID-19, Coronavirus Disease 2019, Conv-LSTM, Convolutional Long Short Term Memory, Convolutional Long Short Term Memory (Conv-LSTM), DL, Deep Learning, DLSTM, Delayed Long Short-Term Memory, Deep learning, EMRO, Eastern Mediterranean Regional Office, ES, Exponential Smoothing, EV, Explained Variance, GRU, Gated Recurrent Unit, Gated Recurrent Unit (GRU), IR, Iran, LR, Linear Regression, LSTM, Long Short-Term Memory, Lasso, Least Absolute Shrinkage and Selection Operator, Long Short Term Memory (LSTM), MAE, Mean Absolute Error, MAPE, Mean Absolute Percentage Error, MERS, Middle East Respiratory Syndrome, ML, Machine Learning, MLP-ICA, Multi-layered Perceptron-Imperialist Competitive Calculation, MSE, Mean Square Error, MSLE, Mean Squared Log Error, Machine learning, New Cases of COVID-19, New Deaths of COVID-19, PRISMA, Preferred Reporting Items for Precise Surveys and Meta-Analyses, RMSE, Root Mean Square Error, RMSLE, Root Mean Squared Log Error, RNN, Repetitive Neural Network, ReLU, Rectified Linear Unit, SARS, Serious Intense Respiratory Disorder, SARS-COV, SARS coronavirus, SARS-COV-2, Serious Intense Respiratory Disorder Coronavirus 2, SVM, Support Vector Machine, VAE, Variational Auto Encoder, WHO, World Health Organization, WPRO, Western Pacific Regional Office,
- Publication type
- Journal Article MeSH