SNAP-25 Dotaz Zobrazit nápovědu
The results of linkage and candidate gene association studies have led to a range of hypotheses about the pathogenesis of schizophrenia. We limited our study to polymorphisms in candidate genes involved in dopaminergic and noradrenergic systems, and in the 25KDa synaptosomal-associated protein (SNAP-25) gene that is related to neurotransmitter exocytosis. Eight single nucleotide polymorphisms (SNPs) in regulating or coding regions of genes for the alpha-2A adrenergic receptor (ADRA2A), dopamine receptors D1 and D3 (DRD1 and DRD3), dopamine β-hydroxylase (DBH) and SNAP-25 were genotyped in male patients with schizophrenia (n=192) and in healthy controls (n=213). These polymorphisms were previously associated with schizophrenia. The allelic association between schizophrenia and ADRA2A rs1800544 polymorphism, SNAP-25 rs1503112 polymorphism, and DRD3 rs6280 polymorphism was found in our study. However, only observations for rs1503112 survived correction for multiple testing. Association was also evaluated by considering the polymorphisms as interactions; in this case, a likelihood ratio test (LRT) revealed evidence for association with schizophrenia in four polymorphism combinations: two DRD3*SNAP-25 combinations (rs6280*rs3746544 and rs6280*rs3746544, P=0.02), one ADRA2A*SNAP25 combination (rs1800544*rs3746544) and one ADRA2A*DBH combination (rs1800544*rs2519152). Our results are in agreement with the previously proposed role of DNA polymorphisms involved in dopaminergic, noradrenergic and synaptic functions in the pathogenesis of schizophrenia. Further relevant studies including larger sample size and more markers are needed to confirm our results.
- MeSH
- alfa-2-adrenergní receptory genetika MeSH
- dospělí MeSH
- frekvence genu MeSH
- genetická predispozice k nemoci MeSH
- genetické asociační studie MeSH
- genotyp MeSH
- jednonukleotidový polymorfismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- pravděpodobnostní funkce MeSH
- protein 25 asociovaný se synaptozomy genetika MeSH
- receptory dopaminu D3 genetika MeSH
- schizofrenie genetika MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ADRA2A protein, human MeSH Prohlížeč
- alfa-2-adrenergní receptory MeSH
- DRD3 protein, human MeSH Prohlížeč
- protein 25 asociovaný se synaptozomy MeSH
- receptory dopaminu D3 MeSH
- SNAP25 protein, human MeSH Prohlížeč
Neurodegenerative diseases are pathologies of the central and peripheral nervous systems characterized by loss of brain functions and problems in movement which occur due to the slow and progressive degeneration of cellular elements. Several neurodegenerative diseases are known such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis and many studies on the molecular mechanisms underlying these pathologies have been conducted. Altered functions of some key proteins and the presence of intraneuronal aggregates have been identified as responsible for the development of the diseases. Interestingly, the formation of the SNARE complex has been discovered to be fundamental for vesicle fusion, vesicle recycling and neurotransmitter release. Indeed, inhibition of the formation of the SNARE complex, defects in the SNARE-dependent exocytosis and altered regulation of SNARE-mediated vesicle fusion have been associated with neurodegeneration. In this review, the biological aspects of neurodegenerative diseases and the role of SNARE proteins in relation to the onset of these pathologies are described.
- Klíčová slova
- ALS, Alzheimer’s disease, Parkinson’s disease, SNAP-25, SNAREs, VAMP2, neurodegenerative disease, syn1,
- MeSH
- exocytóza * MeSH
- fúze membrán * MeSH
- lidé MeSH
- nervový přenos * MeSH
- neurodegenerativní nemoci metabolismus patofyziologie MeSH
- proteiny SNARE metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- proteiny SNARE MeSH
Nitric oxide (NO) and protein kinase C (PKC) are involved in the activation of mammalian oocytes, although their role in the exit from the metaphase II stage and cortical granule (CG) exocytosis is still not fully understood. The aim of this study was to verify whether the NO-donor together with specific PKC-activators induce the complete activation of porcine oocytes assessed as meiosis resumption and a cortical reaction. Pig maturated oocytes were treated with the NO-donor S-nitroso-N-acetylpenicillamine (SNAP, 2 mM) or PKC-activators such as phorbol-12-myristate-13-acetate (PMA, 100 nM), 1-oleoyl-2-acetyl-sn-glycerol (OAG, 400 μM) and l-α-phosphatidylinositol-3,4,5-trisphosphate dipalmitoyl heptaammonium salt (DPAM, 2 μM). To study the combined effect of NO-donor and PKC-activators, aliquots of oocytes were also incubated with SNAP (0.5 mM) together with PKC-activators at the same concentration as above (SNAP-DPAM, SNAP-OAG and SNAP-PMA groups). After in vitro maturation, an aliquot of oocytes was placed in a fresh medium without NO-donor or PKC-activators (Control group). Another aliquot of oocytes was activated by calcium ionophore A23187 (25 μM, 5 min). The results showed that 0% of the control oocytes reassumed meiosis. However, both the PKC-activators (DPAM 44.0 ± 10.0%, OAG 63.3 ± 1.0% and PMA 45.0 ± 16.5%) as well as the NO-donor alone (48.7 ± 21.0%) significantly induced exit from MII. Interestingly, the combination of PKC-activators and SNAP mainly restrained to the meiosis resumption (SNAP-OAG 0, SNAP-DPAM 17.4 ± 2.5% and SNAP-PMA 38.4 ± 8.5%). Control oocytes did not show a cortical reaction and the area occupied by CG reached 25.9 ± 1.7%, whereas CGs were partially released after Ca2+ ionophore treatment (13.0 ± 3.2%). Treatment with PKC-activators induced a cortical reaction compared with the control group (8.6 ± 2.5, 6.7 ± 1.9 and 0.7 ± 0.4%, respectively, for DPAM, OAG and PMA groups). However, treatment with the NO-donor alone (SNAP group 17.2 ± 2.2%) or combined with any PKC-activator prevented cortical reaction (SNAP-DPAM 20.7 ± 2.6%, SNAP-OAG 16.7 ± 2.9% or SNAP-PMA 20.0 ± 2.4%). Besides, meiosis resumption was not always accompanied by a cortical reaction, indicating that these two activation events are independent. In conclusion, PKC-activators alone induce CG exocytosis to the same degree as calcium ionophore. However, an NO-donor alone or combined with PKC-activators is not able to induce a cortical reaction in pig oocytes.
- MeSH
- aktivátory enzymů farmakologie MeSH
- diglyceridy farmakologie MeSH
- donory oxidu dusnatého farmakologie MeSH
- exocytóza účinky léků MeSH
- fosfatidylinositolfosfáty farmakologie MeSH
- meióza účinky léků MeSH
- oocyty cytologie účinky léků fyziologie MeSH
- oxid dusnatý metabolismus MeSH
- proteinkinasa C metabolismus MeSH
- S-nitroso-N-acetylpenicilamin farmakologie MeSH
- Sus scrofa MeSH
- tetradekanoylforbolacetát farmakologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-oleoyl-2-acetylglycerol MeSH Prohlížeč
- aktivátory enzymů MeSH
- diglyceridy MeSH
- donory oxidu dusnatého MeSH
- fosfatidylinositolfosfáty MeSH
- oxid dusnatý MeSH
- phosphatidylinositol 3,4,5-triphosphate MeSH Prohlížeč
- proteinkinasa C MeSH
- S-nitroso-N-acetylpenicilamin MeSH
- tetradekanoylforbolacetát MeSH
Mouse neuronal CAD 5 cell line effectively propagates various strains of prions. Previously, we have shown that it can also be differentiated into the cells morphologically resembling neurons. Here, we demonstrate that CAD 5 cells chronically infected with prions undergo differentiation under the same conditions. To make our model more realistic, we triggered the differentiation in the 3D culture created by gentle rocking of CAD 5 cell suspension. Spheroids formed within 1 week and were fully developed in less than 3 weeks of culture. The mature spheroids had a median size of ~300 μm and could be cultured for up to 12 weeks. Increased expression of differentiation markers GAP 43, tyrosine hydroxylase, β-III-tubulin and SNAP 25 supported the differentiated status of the spheroid cells. The majority of them were found in the G0/G1 phase of the cell cycle, which is typical for differentiated cells. Moreover, half of the PrPC on the cell membrane was N-terminally truncated, similarly as in differentiated CAD 5 adherent cells. Finally, we demonstrated that spheroids could be created from prion-infected CAD 5 cells. The presence of prions was verified by immunohistochemistry, western blot and seed amplification assay. We also confirmed that the spheroids can be infected with the prions de novo. Our 3D culture model of differentiated CAD 5 cells is low cost, easy to produce and cultivable for weeks. We foresee its possible use in the testing of anti-prion compounds and future studies of prion formation dynamics.
- Klíčová slova
- PrP, cell differentiation, neuronal cells, prion infection, prion protein, spheroid culture,
- MeSH
- buněčná diferenciace * fyziologie MeSH
- buněčné kultury metody MeSH
- buněčné linie MeSH
- buněčné sféroidy * metabolismus MeSH
- myši MeSH
- neurony metabolismus MeSH
- prionové nemoci * metabolismus patologie MeSH
- priony metabolismus MeSH
- techniky 3D buněčné kultury metody MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- priony MeSH