bitterling
Dotaz
Zobrazit nápovědu
In some taxa, males perform multiple ejaculations, which may function in sperm competition or in maintaining a baseline density of spermatozoa in the female reproductive tract to ensure fertilization, a process that has been termed 'topping up'. We investigated the function of multiple ejaculations in two species of bitterling, the European bitterling (Rhodeus amarus) and Chinese rose bitterling (Rhodeus ocellatus). Bitterling oviposit in living freshwater mussels, with fertilization taking place within the mussel gill cavity. Thus, although fertilization is external, the mussel is analogous to the female reproductive tract in an internally fertilizing species. We measured the frequency of ejaculations and mussel inspections by individual males of two bitterling species in 28 replicated mesocosms and examined focal male responses to rival ejaculations and the presence of females in spawning condition. We used a model of ejaculatory behaviour to simulate the temporal abundance of spermatozoa in mussels. Male R. amarus exhibited high rates of ejaculation and inspection of the siphons of mussels and increased their ejaculation rate in response to the presence of females in spawning condition. Rhodeus ocellatus showed lower overall rates of ejaculation, but significantly elevated ejaculation rate in response to rival ejaculations. The ejaculatory strategy of R. amarus is one that maintains a minimum level of spermatozoa in mussels, which is elevated when the probability of oviposition increases. In contrast, R. ocellatus engages more directly in sperm competition with rivals. We discuss these results in the context of the function of multiple ejaculations and male mating tactics.
- Klíčová slova
- Acheilognathinae, alternative mating tactics, fertilization, mating system, sneaking, sperm competition, territoriality,
- MeSH
- biologické modely MeSH
- Cyprinidae fyziologie MeSH
- ejakulace fyziologie MeSH
- kladení vajíček MeSH
- sexuální chování zvířat fyziologie MeSH
- spermie fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In many taxa, odour cues mediate mating decisions. A key question is what these odours comprise, where they are produced, and what they signal. Using rose bitterling, fish that spawn in the gills of freshwater mussels, we investigated the role of sperm cues on female oviposition decisions using individuals of known MHC genotype. Male bitterling frequently released sperm prior to female oviposition and females responded with an increased probability of oviposition and released a greater number of eggs, particularly if males had a dissimilar MHC genotype. These mating preferences by females were shown to be adaptive, with MHC dissimilarity of males and females correlated positively with embryo survival. These results support a role for indirect benefits to rose bitterling mate choice, and we propose that sperm acts as a releaser pheromone in bitterling, functioning as a sexual ornament signalling male quality as a mate.
- Klíčová slova
- ejaculate, mate choice, pheromone, sexual selection, spermatozoa,
- MeSH
- hlavní histokompatibilní komplex genetika MeSH
- máloostní genetika fyziologie MeSH
- regulace genové exprese MeSH
- sexuální výběr u zvířat * MeSH
- spermie fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Susceptibility to parasite infection was examined in a field experiment for four populations of 0+ juvenile European bitterling (Rhodeus amarus): one sympatric to local parasite fauna, one allopatric, and two hybrid populations. Significantly higher parasite abundance was recorded in the allopatric bitterling population, suggesting a maladaptation of parasites to their sympatric host. Type of parasite life cycle played an important role in host-parasite interactions. While the abundance of allogenic species between populations was comparable, a significant difference was found in abundance of autogenic parasite species between fish populations, with the allopatric population more infected. These results correspond with a prediction of higher dispersion probability and higher gene flow among geographically distant populations of allogenic species as compared to autogenic species. Increased susceptibility to parasites that do not occur within the natural host's geographical distribution was found in the allopatric host, but only for autogenic species. A difference in infection susceptibility was detected among populations of early-hatched bitterling exposed to infection during a period of high parasite abundance and richness in the environment. Differences in parasite abundance and species diversity among populations diminished, however, with increasing time of exposure. No difference was found within late-hatched populations, probably due to a lower probability of infection in late-hatched cohorts.
- MeSH
- biodiverzita MeSH
- chiméra parazitologie MeSH
- Cyprinidae parazitologie MeSH
- interakce hostitele a parazita * MeSH
- náchylnost k nemoci MeSH
- nemoci ryb parazitologie MeSH
- parazitární nemoci u zvířat parazitologie MeSH
- paraziti klasifikace izolace a purifikace patogenita MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Generalist parasites have the capacity to infect multiple hosts. The temporal pattern of host specificity by generalist parasites is rarely studied, but is critical to understanding what variables underpin infection and thereby the impact of parasites on host species and the way they impose selection on hosts. Here, the temporal dynamics of infection of four species of freshwater mussel by European bitterling fish (Rhodeus amarus) was investigated over three spawning seasons. Bitterling lay their eggs in the gills of freshwater mussels, which suffer reduced growth, oxygen stress, gill damage and elevated mortality as a result of parasitism. The temporal pattern of infection of mussels by European bitterling in multiple populations was examined. Using a Bernoulli Generalized Additive Mixed Model with Bayesian inference it was demonstrated that one mussel species, Unio pictorum, was exploited over the entire bitterling spawning season. As the season progressed, bitterling showed a preference for other mussel species, which were inferior hosts. Temporal changes in host use reflected elevated density-dependent mortality in preferred hosts that were already infected. Plasticity in host specificity by bitterling conformed with the predictions of the host selection hypothesis. The relationship between bitterling and their host mussels differs qualitatively from that of avian brood parasites.
- Klíčová slova
- Brood parasite, Host–parasite co-evolution, Oviposition, Spawning site, Superparasitism,
- MeSH
- Bayesova věta MeSH
- Cyprinidae MeSH
- hostitelská specificita * MeSH
- interakce hostitele a parazita * MeSH
- paraziti MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The role of genetic benefits in female mate choice remains a controversial aspect of sexual selection theory. In contrast to "good allele" models of sexual selection, "compatible allele" models of mate choice predict that females prefer mates with alleles complementary to their own rather than conferring additive effects. While correlative results suggest complementary genetic effects to be plausible, direct experimental evidence is scarce. A previous study on the Chinese rose bitterling (Rhodeus ocellatus) demonstrated a positive correlation between female mate choice, offspring growth and survival, and the functional dissimilarity between the Major Histocompatibility Complex (MHC) alleles of males and females. Here we directly tested whether females used cues associated with MHC genes to select genetically compatible males in an experimental framework. By sequentially pairing females with MHC similar and dissimilar males, based on a priori known MHC profiles, we showed that females discriminated between similar and dissimilar males and deposited significantly more eggs with MHC dissimilar males. Notably, the degree of dissimilarity was an important factor for female decision to mate, possibly indicating a potential threshold value of dissimilarity for decision making, or of an indirect effect of the MHC.
- MeSH
- Cyprinidae imunologie fyziologie MeSH
- hlavní histokompatibilní komplex imunologie MeSH
- lineární modely MeSH
- rozhodování MeSH
- sexuální výběr u zvířat fyziologie MeSH
- výběrové chování fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The impact of multiple invading species can be magnified owing to mutual facilitation--termed 'invasional meltdown'--but invasive species can also be adversely affected by their interactions with other invaders. Using a unique reciprocal host-parasite relationship between a bitterling fish (Rhodeus amarus) and unionid mussels, we show that an invasive mussel reverses the roles in the relationship. Bitterling lay their eggs into mussel gills, and mussel larvae parasitize fish. Bitterling recently colonized Europe and parasitize all sympatric European mussels, but are unable to use a recently invasive mussel, Anodonta woodiana. The parasitic larvae of A. woodiana successfully develop on R. amarus, whereas larvae of European mussels are rejected by bitterling. This demonstrates that invading species may temporarily benefit from a coevolutionary lag by exploiting evolutionarily naive hosts, but the resulting relaxed selection may facilitate its exploitation by subsequent invading species, leading to unexpected consequences for established interspecific relationships.
- MeSH
- Anodonta růst a vývoj parazitologie MeSH
- biologická evoluce MeSH
- Cyprinidae růst a vývoj parazitologie MeSH
- druhová specificita MeSH
- interakce hostitele a parazita MeSH
- kladení vajíček MeSH
- neparametrická statistika MeSH
- sympatrie MeSH
- vznik druhů (genetika) MeSH
- žábry parazitologie MeSH
- zavlečené druhy * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Parasite community composition of European bitterling (Rhodeus amarus), the only bitterling species occurring on the European continent, was investigated in 16 different localities from four European sea drainages during 1998-2007. A total of 41 species of metazoan parasites was identified. Nine parasite species are new records for European bitterling, namely Dactylogyrus rarissimus, D. suecicus, D. yinwenyingae, Gyrodactylus vimbi, Sphaerostomum globiporum, Petasiger sp., Paryphostomum radiatum, Ichthyocotylurus variegatus and Posthodiplostomum brevicaudatum. The specialist Gyrodactylus rhodei was the most widely distributed and one of the most prevalent species. The most frequent digenean species, represented by larval stages, was Metorchis xanthosomus. The parasite community of European bitterling was characterised by the dominance of generalists and parasites with autogenic life cycles. The rare occurrence of strictly endoparasitic species reflected the specific diet of the fish host. The character of the habitat significantly affected the parasite assemblages of bitterling. The greatest similarity was associated with lentic habitats (gravel pits and oxbows) and the lowest similarity between gravel pits and rivers. Juvenile bitterling from 8mm in length upwards were colonised by metazoan parasites, firstly by the monogenean G. rhodei. Host body size was positively correlated with parasite species richness, but the variability explained by length was low.
- MeSH
- Cyprinidae parazitologie MeSH
- ekosystém * MeSH
- interakce hostitele a parazita * MeSH
- nemoci ryb parazitologie MeSH
- parazitární nemoci u zvířat parazitologie MeSH
- paraziti klasifikace izolace a purifikace fyziologie MeSH
- velikost těla MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
BACKGROUND: Anthropogenic factors can have a major impact on the contemporary distribution of intraspecific genetic diversity. Many freshwater fishes have finely structured and locally adapted populations, but their natural genetic structure can be affected by river engineering schemes across river basins, fish transfers in aquaculture industry and conservation management. The European bitterling (Rhodeus amarus) is a small fish that is a brood parasite of freshwater mussels and is widespread across continental Europe. Its range recently expanded, following sharp declines in the 1970s and 1980s. We investigated its genetic variability and spatial structure at the centre of its distribution at the boundary of three watersheds, testing the role of natural and anthropogenic factors in its genetic structure. RESULTS: Sequences of mitochondrial cytochrome B (CYTB) revealed that bitterling colonised central Europe from two Ponto-Caspian refugia, which partly defines its contemporary genetic structure. Twelve polymorphic microsatellite loci revealed pronounced interpopulation differentiation, with significant small-scale differentiation within the same river basins. At a large scale, populations from the Baltic Sea watershed (middle Oder and Vistula basins) were distinct from those from the Black Sea watershed (Danube basin), while populations from rivers of the North Sea watershed (Rhine, Elbe) originated from the admixture of both original sources. Notable exceptions demonstrated the potential role of human translocations across watersheds, with the upper River Oder (Baltic watershed) inhabited by fish from the Danube basin (Black Sea watershed) and a population in the southern part of the River Elbe (North Sea watershed) basin possessing a signal of admixture from the Danube basin. CONCLUSIONS: Hydrography and physical barriers to dispersal are only partly reflected in the genetic structure of the European bitterling at the intersection of three major watersheds in central Europe. Drainage boundaries have been obscured by human-mediated translocations, likely related to common carp, Cyprinus carpio, cultivation and game-fish management. Despite these translocations, populations of bitterling are significantly structured by genetic drift, possibly reinforced by its low dispersal ability. Overall, the impact of anthropogenic factors on the genetic structure of the bitterling populations in central Europe is limited.
- Klíčová slova
- Cryptic invasions, Freshwater conservation, Game fish stocking, Gene flow, Human-mediated translocation, Phylogeography, Population genetics,
- MeSH
- Bayesova věta MeSH
- druhová specificita MeSH
- frekvence genu genetika MeSH
- genetická variace MeSH
- kapři genetika MeSH
- lidé MeSH
- mikrosatelitní repetice genetika MeSH
- mitochondriální DNA genetika MeSH
- mitochondrie genetika MeSH
- populační genetika MeSH
- řeky * MeSH
- sladká voda MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Severní moře MeSH
- Názvy látek
- mitochondriální DNA MeSH
South-east Europe, along with the adjacent region of south-west Asia, is an important biodiversity hotspot with high local endemism largely contributed by contemporary continental lineages that retreated to southern refugia during colder Quaternary periods. We investigated the genetic diversity of the European bitterling fish (Rhodeus amarus) species complex (Cyprinidae) across its range in the western Palearctic, but with a particular emphasis in the region of Balkan, Pontic and Caspian refugia. We genotyped 12 polymorphic microsatellite loci and a partial sequence of mitochondrial gene cytochrome b (CYTB) for a set of 1,038 individuals from 60 populations. We used mtDNA sequences to infer phylogenetic relationships and historical demography, and microsatellite markers to describe fine-scale genetic variability and structure. Our mtDNA analysis revealed six well-supported lineages, with limited local co-occurrence. Two lineages are distributed throughout central and western Europe (lineages "A" and "B"), with two zones of secondary contact. Another two lineages were restricted to the Ponto-Aegean region of Greece (lineages "C" and "D") and the final two lineages were restricted south of the Caucasus mountains (lineage "E" from the Black Sea watershed and lineage "F" from the Caspian watershed). A signal of recent expansion was revealed in the two widespread lineages and the Ponto-Aegean lineage "C". The geographic distribution of clusters detected by nuclear microsatellites corresponded well with mitochondrial lineages and demonstrated finely sub-structured populations. A profound population structure suggested a significant role of genetic drift in differentiation among lineages. Lineage divergence in the Ponto-Aegean and Caspian regions are substantial, supporting the validity of two described endemic species (Rhodeus meridionalis as lineage "D" and Rhodeus colchicus as lineage "E") and invite taxonomic evaluation of the other two southern lineages (Thracean "C" and Caspian "F").
- Klíčová slova
- Balkan refugium, Cyprinidae, Gene flow, Genetic drift, Mediterranean endemism, Ponto-Caspian region,
- MeSH
- biodiverzita MeSH
- Cyprinidae klasifikace genetika MeSH
- cytochromy b genetika MeSH
- demografie MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genetický drift MeSH
- genotyp MeSH
- mikrosatelitní repetice MeSH
- mitochondriální DNA chemie MeSH
- mitochondrie genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- západní Asie MeSH
- Názvy látek
- cytochromy b MeSH
- mitochondriální DNA MeSH
- Klíčová slova
- Acheilognathinae, coevolution, ecological speciation, freshwater mussels, oviposition,
- MeSH
- Cyprinidae * MeSH
- ryby MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH