framework Al-Lewis sites
Dotaz
Zobrazit nápovědu
Framework AlFR Lewis sites represent a substantial portion of active sites in H-BEA zeolite catalysts activated at low temperatures. We studied their nature by 27Al WURST-QCPMG nuclear magnetic resonance (NMR) and proposed a plausible mechanism of their formation based on periodic density functional theory calculations constrained by 1H MAS, 27Al WURST-QCPMG, and 29Si MAS NMR experiments and FTIR measurements. Our results show that the electron-pair acceptor of AlFR Lewis sites corresponds to an AlTRI atom tricoordinated to the zeolite framework, which adsorbs a water molecule. This AlTRI-OH2 complex is reflected in 27Al NMR resonance with δiso = 70 ± 5 ppm and CQ = 13 ± 2 MHz. In addition, the AlTRI atom with adsorbed acetonitrile-d3 (the probe of AlFR Lewis sites in FTIR spectroscopy) exhibits a similar 27Al NMR resonance. We suggest that these AlFR Lewis sites are formed from Al-OH-Si-O-Si-O-Si-OH-Al sequences located in 12-rings (i.e., close unpaired Al atoms).
- Publikační typ
- časopisecké články MeSH
Beta zeolites with Si/Al around 14 were prepared using three new alkali-free synthesis methods based on the application of amorphous aluminosilicate precursor and calcined in ammonia or air. All samples exhibit structural and textural properties of standard beta zeolite. Comprehensive study by 27Al and 29Si MAS NMR, together with FTIR adsorption of d3-acetonitrile and pyridine were used to characterize the influence of both the synthesis and calcination procedure on the framework Al atoms and related Brønsted and Lewis acid sites. While calcination in ammonia preserves all framework Al atoms, calcination in air results in 15% release of framework Al, but without restrictions of the accessibility of the beta zeolite channel system for bulky pyridine molecules. Terminal (SiO)3AlOH groups present in the hydrated zeolites were suggested as a precursor of framework Al-Lewis sites. Surprisingly, the mild dealumination of the air-calcined zeolites result in an increase of the concentration of Brønsted acid sites and a decrease of the total concentration of Lewis sites with the formation of the extra-framework ones.
- Klíčová slova
- Brønsted acid sites, acid sites, air calcination, alkali-free synthesis, ammonia calcination, beta zeolite, de-templating, extra-framework Al-Lewis sites, framework Al-Lewis sites,
- MeSH
- alkálie chemie MeSH
- magnetická rezonanční spektroskopie MeSH
- zeolity chemická syntéza chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alkálie MeSH
- zeolity MeSH
While the structures of Brønsted acid sites (BAS) in zeolites are well understood, those of Lewis acid sites (LAS) remain an active area of investigation. Under hydrated conditions, the reversible formation of framework-associated octahedral aluminum has been observed in zeolites in the acidic form. However, the structure and formation mechanisms are currently unknown. In this work, combined experimental 27 Al NMR spectroscopy and computational data reveal for the first time the details of the zeolite framework-associated octahedral aluminium. The octahedral LAS site becomes kinetically allowed and thermodynamically stable under wet conditions in the presence of multiple nearby BAS sites. The critical condition for the existence of such octahedral LAS appears to be the availability of three protons: at lower proton concentration, either by increasing the Si/Al or by ion-exchange to non-acidic form, the tetrahedral BAS becomes thermodynamically more stable. This work resolves the question about the nature and reversibility of framework-associated octahedral aluminium in zeolites.
- Klíčová slova
- Ab Initio Molecular Dynamics, Octahedral Aluminum, Solid-State NMR, Zeolite Hydrolysis, Zeolites,
- Publikační typ
- časopisecké články MeSH
Zeolites are highly important heterogeneous catalysts. Besides Brønsted SiOHAl acid sites, also framework AlFR Lewis acid sites are often found in their H-forms. The formation of AlFR Lewis sites in zeolites is a key issue regarding their selectivity in acid-catalyzed reactions. The local structures of AlFR Lewis sites in dehydrated zeolites and their precursors--"perturbed" AlFR atoms in hydrated zeolites--were studied by high-resolution MAS NMR and FTIR spectroscopy and DFT/MM calculations. Perturbed framework Al atoms correspond to (SiO)3AlOH groups and are characterized by a broad (27)Al NMR resonance (δi = 59-62 ppm, CQ = 5 MHz, and η = 0.3-0.4) with a shoulder at 40 ppm in the (27)Al MAS NMR spectrum. Dehydroxylation of (SiO)3AlOH occurs at mild temperatures and leads to the formation of AlFR Lewis sites tricoordinated to the zeolite framework. Al atoms of these (SiO)3Al Lewis sites exhibit an extremely broad (27)Al NMR resonance (δi ≈ 67 ppm, CQ ≈ 20 MHz, and η ≈ 0.1).
- Klíčová slova
- Lewis acids, NMR spectroscopy, aluminum, density functional calculations, zeolites,
- Publikační typ
- časopisecké články MeSH
The catalytic activity and the adsorption properties of zeolites depend on their topology and composition. For a better understanding of the structure-activity relationship it is advantageous to focus just on one of these parameters. Zeolites synthesized recently by the ADOR protocol offer a new possibility to investigate the effect of the channel diameter on the adsorption and catalytic properties of zeolites: UTL, OKO, and PCR zeolites consist of the same dense 2D layers (IPC-1P) that are connected with different linkers (D4R, S4R, O-atom, respectively) resulting in the channel systems of different sizes (14R × 12R, 12R × 10R, 10R × 8R, respectively). Consequently, extra-framework cation sites compensating charge of framework Al located in these dense 2D layers (channel-wall sites) are the same in all three zeolites. Therefore, the effect of the zeolite channel size on the Lewis properties of the cationic sites can be investigated independent of other factors determining the quality of Lewis sites. UTL, OKO, and PCR and pillared 2D IPC-1PI materials were prepared in Li-form and their properties were studied by a combination of experimental and theoretical methods. Qualitatively different conclusions are drawn for Li(+) located at the channel-wall sites and at the intersection sites (Li(+) located at the intersection of two zeolite channels): the Lewis acid strength of Li(+) at intersection sites is larger than that at channel-wall sites. The Lewis acid strength of Li(+) at channel-wall sites increases with decreasing channel size. When intersecting channels are small (10R × 8R in PCR) the intersection Li(+) sites are no longer stable and Li(+) is preferentially located at the channel-wall sites. Last but not least, the increase in adsorption heats with the decreasing channel size (due to enlarged dispersion contribution) is clearly demonstrated.
- Publikační typ
- časopisecké články MeSH
We investigate the adsorption of water molecules in the zeolite H-MFI at isolated Brønsted acid sites (BAS) for loadings of 1, 2, and 3 H2O/BAS. We consider two approaches to the O3Al-O(H)-Si sites: the Brønsted-type approach of H2O to the acidic proton and the Lewis-type approach to the aluminium atom of the AlO4 tetrahedron. From the twelve crystallographically inequivalent framework sites for Al, a representative set of six active site positions is chosen. For them, we calculate CCSD(T)-quality adsorption energies at MP2-quality adsorption structures for different approaches, 48 in total. The Brønsted-type approach is favoured for most cases but the Lewis-type approach has similar stability for some framework positions. We predict heats of adsorption per molecule ranging from 60 to 76, 56 to 65, and 56 to 64 kJ mol-1 for loadings of 1, 2, and 3 H2O/BAS, respectively. For 1 H2O/BAS, the experimental result (70 kJ mol-1) falls into the range of our predictions, whereas for 2 and 3 H2O/BAS, the measured adsorption heats per molecule (74 and 70 kJ mol-1, respectively) are larger than our predictions. For 2 H2O/BAS, the ion-pair structure generated by proton transfer to the water dimer competes with the neutral adsorption complex. The DFT adsorption energies (PBE+D2) deviate significantly from the CCSD(T)-quality reference energies, by up to 25 kJ mol-1 for 1 H2O/BAS, 25 kJ mol-1 per H2O for 2 H2O/BAS, and 18 kJ mol-1 per H2O for 3 H2O/BAS. Specifically, PBE+D2 overstabilises the ion-pair structure, i.e. in many cases the PBE+D2 error is much larger for ionic than for neutral adsorption structures.
- Publikační typ
- časopisecké články MeSH
Catalytic behavior of isomorphously substituted B-, Al-, Ga-, and Fe-containing extra-large pore UTL zeolites was investigated in Knoevenagel condensation involving aldehydes, Pechmann condensation of 1-naphthol with ethylacetoacetate, and Prins reaction of β-pinene with formaldehyde and compared with large-pore aluminosilicate zeolite beta and representative Metal-Organic-Frameworks Cu3(BTC)2 and Fe(BTC). The yield of the target product over the investigated catalysts in Knoevenagel condensation increases in the following sequence: (Al)beta < (Al)UTL < (Ga)UTL < (Fe)UTL < Fe(BTC) < (B)UTL < Cu3(BTC)2 being mainly related to the improving selectivity with decreasing strength of active sites of the individual catalysts. The catalytic performance of Fe(BTC), containing the highest concentration of Lewis acid sites of the appropriate strength is superior over large-pore zeolite (Al)beta and B-, Al-, Ga-, Fe-substituted extra-large pore zeolites UTL in Prins reaction of β-pinene with formaldehyde and Pechmann condensation of 1-naphthol with ethylacetoacetate.
- Klíčová slova
- MOFs, Prins reaction, UTL, condensation reactions, zeolites,
- Publikační typ
- časopisecké články MeSH
The catalytic performance of a set of metal-organic frameworks [CuBTC, FeBTC, MIL-100(Fe), MIL-100(Cr), ZIF-8, MIL-53(Al)] was investigated in the Prins condensation of β-pinene with formaldehyde and compared with the catalytic behavior of conventional aluminosilicate zeolites BEA and FAU and titanosilicate zeolite MFI (TS-1). The activity of the investigated metal-organic frameworks (MOFs) increased with the increasing concentration of accessible Lewis acid sites in the order ZIF-8
- MeSH
- bicyklické monoterpeny MeSH
- ethanol analogy a deriváty chemie MeSH
- katalýza MeSH
- kovy chemie MeSH
- kyseliny chemie MeSH
- monoterpeny chemie MeSH
- můstkové bicyklické sloučeniny chemie MeSH
- technologie zelené chemie MeSH
- zeolity chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- beta-pinene MeSH Prohlížeč
- bicyklické monoterpeny MeSH
- ethanol MeSH
- kovy MeSH
- kyseliny MeSH
- monoterpeny MeSH
- můstkové bicyklické sloučeniny MeSH
- zeolity MeSH
The adsorption and catalytic properties of three-dimensional zeolite UTL were investigated computationally along with properties of its two-dimensional analogue IPC-1P that can be obtained from UTL by a removal of D4R units. Adsorption properties and Lewis acidity of extra-framework Li(+) sites were investigated for both two- and three-dimensional forms of UTL using the carbon monoxide as a probe molecule. The CO adsorption enthalpies, calculated with various dispersion-corrected DFT methods, including DFT/CC, DFT-D2, and vdW-DF2, and the CO stretching frequencies obtained with the νCO/rCO correlation method are compared for corresponding Li(+) sites in 3D and 2D UTL zeolite. For the majority of framework Al positions the Li(+) cation is preferably located in one of the channel wall sites and such sites remains unchanged upon the 3D → 2D UTL transformation; consequently, the adsorption enthalpies become only slightly smaller in 2D UTL (less than 3 kJ mol(-1)) due to the missing part of dispersion interactions and νCO becomes also only up to 5 cm(-1) smaller in 2D UTL due to the missing repulsion with framework oxygen atoms from the opposite site of the zeolite channel (effect from the top). However, when Li(+) is located in the intersection site in 3D UTL (about 20% probability), its coordination with the framework is significantly increased in 2D UTL and that is accompanied by significant decrease of both νCO (about 20 cm(-1)) and adsorption enthalpy (about 20 kJ mol(-1)). Because the intersection sites in 3D UTL are the most active adsorption and catalytic Lewis sites, the results reported herein suggest that the 3D → 2D transformation of UTL zeolite is connected with partial decrease of zeolite activity in processes driven by Lewis acid sites.
- Publikační typ
- časopisecké články MeSH
The catalytic behavior of isomorphously substituted MIL-100(M) (M=Al, Cr, Fe, In, Sc, V) is investigated for the synthesis of nopol through the Prins condensation of β-pinene with paraformaldehyde. The large mesoporous cages of the metal-organic frameworks provide a sustainable confinement for the formation of the target product (100 % selectivity for nopol over all materials studied). MIL-100(Sc) and MIL-100(V) exhibit the highest yields (up to 90 %) of nopol after just 20 min from the beginning of the reaction, owing to their high concentrations of accessible Lewis sites possessing intermediate acidity. The high catalytic activity (reaching almost 90 % β-pinene conversion) even upon decreasing the amount of catalyst from 100 to 25 mg (0.025 and 0.0063 gcatalyst mmolsubstrate -1 , respectively), the stability of its structure, and the possibility to use it several times, make MIL-100(V) a promising material for applications in acid-catalyzed reactions under mild reaction conditions.
- Klíčová slova
- Prins reaction, activation energy, heterogeneous catalysis, metal-organic frameworks, nopol synthesis,
- Publikační typ
- časopisecké články MeSH