molecular systematics
Dotaz
Zobrazit nápovědu
The Echinostomatoidea is a large, cosmopolitan group of digeneans currently including nine families and 105 genera, the vast majority parasitic, as adults, in birds with relatively few taxa parasitising mammals, reptiles and, exceptionally, fish. Despite the complex structure, diverse content and substantial species richness of the group, almost no attempt has been made to elucidate its phylogenetic relationships at the suprageneric level based on molecules due to the lack of data. Herein, we evaluate the consistency of the present morphology-based classification system of the Echinostomatoidea with the phylogenetic relationships of its members based on partial sequences of the nuclear lsrRNA gene for a broad diversity of taxa (80 species, representing eight families and 40 genera), including representatives of five subfamilies of the Echinostomatidae, which currently exhibits the most complex taxonomic structure within the superfamily. This first comprehensive phylogeny for the Echinostomatoidea challenged the current systematic framework based on comparative morphology. A morphology-based evaluation of this new molecular framework resulted in a number of systematic and nomenclatural changes consistent with the phylogenetic estimates of the generic and suprageneric boundaries and a new phylogeny-based classification of the Echinostomatoidea. In the current systematic treatment: (i) the rank of two family level lineages, the former Himasthlinae and Echinochasminae, is elevated to full family status; (ii) Caballerotrema is distinguished at the family level; (iii) the content and diagnosis of the Echinostomatidae (sensu stricto) (s. str.) are revised to reflect its phylogeny, resulting in the abolition of the Nephrostominae and Chaunocephalinae as synonyms of the Echinostomatidae (s. str.); (iv) Artyfechinostomum, Cathaemasia, Rhopalias and Ribeiroia are re-allocated within the Echinostomatidae (s. str.), resulting in the abolition of the Cathaemasiidae, Rhopaliidae and Ribeiroiinae, which become synonyms of the Echinostomatidae (s. str.); and (v) refinements of the generic boundaries within the Echinostomatidae (s. str.), Psilostomidae and Fasciolidae are made.
- Klíčová slova
- Caballerotrematidae n. fam., Echinochasmidae, Echinostomatidae (sensu stricto), Echinostomatoidea, Himasthlidae, Host associations, Molecular phylogeny, Systematics,
- MeSH
- Echinostomatidae klasifikace genetika izolace a purifikace MeSH
- fylogeneze * MeSH
- infekce červy třídy Trematoda parazitologie veterinární MeSH
- lidé MeSH
- molekulární evoluce MeSH
- molekulární sekvence - údaje MeSH
- obratlovci klasifikace parazitologie MeSH
- plazi MeSH
- ptáci MeSH
- ryby MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The systematic position and phylogenetic relationships of Ceratostomella sensu lato and phenotypically similar fungi using comparative morphological and culture studies and phylogenetic analyses of the nuclear large- and small-subunit ribosomal DNA were explored. In the light of inferred phylogenies and morphological data the genus Ceratostomella is redescribed, the generic concept is emended and four species are accepted (viz. C. cuspidata, C. pyrenaica, C. rhynchophora and C. rostrata). A new genus Xylomelasma is introduced and delimited from Ceratostomella, with two new species described (viz. X. novaezelandiae and X. sordida). In culture species of both Ceratostomella and Xylomelasma produced sterile mycelium. The genus Lentomitella with a phaeoisaria-like anamorph formed in vitro is reinstated to encompass taxa formerly attributed to the broadly perceived Ceratostomella with three accepted species (viz. L. cirrhosa, L. crinigera and L. tomentosa). Lentomitella and Ceratostomella are clearly distinguishable by the morphology of asci, ascospores and centrum. Lentomitella is compared to phenotypically similar Ceratosphaeria, which formed a harpophora-like anamorph in vitro. In the present phylogenies Ceratostomella, Ceratosphaeria, Lentomitella and Xylomelasma are shown as clearly separate genera belonging to three different groups of perithecial ascomycetes. Ceratostomella, Lentomitella and Xylomelasma reside within a large unsupported clade consisting of members the Ophiostomatales, the freshwater Annulatascaceae and a group of nonstromatic, terrestrial taxa. Ceratosphaeria is well supported within the Magnaporthaceae. The systematic value of morphological characters of ascospores, paraphyses, asci, centrum and conidiogenesis in segregating taxa from Ceratostomella sensu lato and their relatives is discussed.
- MeSH
- Ascomycota klasifikace cytologie genetika MeSH
- DNA fungální chemie genetika MeSH
- fylogeneze MeSH
- geny rRNA MeSH
- mikrofotografie MeSH
- mikroskopie MeSH
- molekulární sekvence - údaje MeSH
- mycelium růst a vývoj MeSH
- ribozomální DNA chemie genetika MeSH
- sekvenční analýza DNA MeSH
- spory hub cytologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA fungální MeSH
- ribozomální DNA MeSH
Climbing mice in the genus Dendromus (sensu lato) are widely distributed in Africa, south of the Saharan Desert. The 17 currently recognized species in the genus range from widespread taxa to single-mountain endemics, and there is considerable variation across species with respect to habitats occupied. These habitats range from arid grasslands and savannahs to sub-alpine and alpine vegetation. Using the most comprehensive geographic and genetic survey to date and after reviewing many type specimens, we assess the systematics and biogeography of Dendromus. Given the structure of our molecular phylogenetic hypotheses, in which we recover six major clades, we propose the recognition of three genera within the Dendromus group (sensu lato): in addition to Dendromus (26 lineages), we suggest the retention of Megadendromus (monotypic) and the resurrection of the genus Poemys (six lineages). From our model-based molecular phylogenetic results and morphological comparisons, we suggest that six formerly synonymized taxa should be resurrected, and we highlight 14 previously undescribed lineages. We also constructed time-calibrations on our phylogeny, and performed ancestral area reconstructions using BioGeoBEARS. Based on fossil evidence, Dendromus appears to have had a widespread African distribution dating back to the Late Miocene (8-10 Ma), and our basal ancestral area reconstruction (Ethiopians Highlands + Eastern African Mountains + Zambezian region) supports this. Divergence of the six major clades we recover (Poemys, Megadendromus and four within Dendromus) occurred prior to or at the Miocene-Pliocene boundary 5.3 Ma. Biogeographically, Megadendromus is restricted to the Ethiopian Highlands. The ancestral area for Poemys is reconstructed as the Zambezian region, with species distributions ranging from South Africa to Western Africa. The ancestral area for Dendromus is reconstructed as the Ethiopian Highlands, with the ancestral areas of the four major clades being reconstructed as Ethiopian Highlands, Albertine Rift, South Africa or Western Africa. None of the four Dendromus clades are reciprocally monophyletic with respect to distributional area.
- Klíčová slova
- Africa, Climbing mice, Dendromus, Dispersal, Phylogeny, Vicariance,
- MeSH
- ekosystém MeSH
- fylogeneze * MeSH
- fylogeografie * MeSH
- Muridae klasifikace genetika MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Jihoafrická republika MeSH
- západní Afrika MeSH
We describe four new species of Flabellula, Leptomyxa and Rhizamoeba and publish new SSU rRNA gene and actin gene sequences of leptomyxids. Using these data we provide the most comprehensive SSU phylogeny of leptomyxids to date. Based on the analyses of morphological data and results of the SSU rRNA gene phylogeny we suggest changes in the systematics of the order Leptomyxida (Amoebozoa: Lobosa: Tubulinea). We propose to merge the genera Flabellula and Paraflabellula (the genus Flabellula remains valid by priority rule). The genus Rhizamoeba is evidently polyphyletic in all phylogenetic trees; we suggest retaining the generic name Rhizamoeba for the group unifying R. saxonica, R.matisi n. sp. and R. polyura, the latter remains the type species of the genus Rhizamoeba. Based on molecular and morphological evidence we move all remaining Rhizamoeba species to the genus Leptomyxa. New family Rhizamoebidae is established here in order to avoid paraphyly of the family Leptomyxidae. With the suggested changes both molecular and morphological systems of the order Leptomyxida are now fully congruent to each other.
- Klíčová slova
- Protists, amoeba, morphology, phylogeny, systematics, ultrastructure.,
- MeSH
- fylogeneze * MeSH
- sekvenční analýza DNA MeSH
- transmisní elektronová mikroskopie MeSH
- Tubulina klasifikace genetika ultrastruktura MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We isolated and cultivated 31 strains of free-living heterolobosean flagellates and amoebae from freshwater, brackish, and marine sediments with low concentrations of oxygen. Phylogenetic analysis of small subunit (SSU) rDNA showed that the strains constitute a single clade, the Psalteriomonadidae. According to combined light-microscopic morphology plus molecular phylogeny, our isolates belong to seven species and five genera, from which three species and two genera are new. In addition, previously described anaerobic species Percolomonas descissus and Vahlkampfia anaerobica are transferred to the Psalteriomonadidae. We identified a flagellate stage of Monopylocystis visvesvarai which was reported to produce only amoebae. Two environmental sequences previously obtained from acidic environments belong to the Psalteriomonadidae as well, suggesting a broad ecological importance of the Psalteriomonadidae. The ultrastructure of two psalteriomonadid species was also studied. Unifying features of the Psalteriomonadidae are acristate mitochondrial derivates, flagellates with a ventral groove and four flagella, and a harp-like structure in the mastigont. A new overall classification of the Psalteriomonadidae is proposed. Our data show that the Psalteriomonadidae are much more diverse than previously thought and constitute the main anaerobic lineage within the Heterolobosea.
- MeSH
- Eukaryota klasifikace cytologie genetika MeSH
- fylogeneze MeSH
- geny rRNA MeSH
- mikrobiologie vody * MeSH
- mikroskopie MeSH
- molekulární sekvence - údaje MeSH
- protozoální DNA chemie genetika MeSH
- ribozomální DNA chemie genetika MeSH
- RNA protozoální genetika MeSH
- RNA ribozomální 18S genetika MeSH
- sekvenční analýza DNA MeSH
- shluková analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- protozoální DNA MeSH
- ribozomální DNA MeSH
- RNA protozoální MeSH
- RNA ribozomální 18S MeSH
While dixenous trypanosomatids represent one of the most dangerous pathogens for humans and domestic animals, their monoxenous relatives have frequently become model organisms for studies of diversity of parasitic protists and host-parasite associations. Yet, the classification of the family Trypanosomatidae is not finalized and often confusing. Here we attempt to make a blueprint for future studies in this field. We would like to elicit a discussion about an updated procedure, as traditional taxonomy was not primarily designed to be used for protists, nor can molecular phylogenetics solve all the problems alone. The current status, specific cases, and examples of generalized solutions are presented under conditions where practicality is openly favored over rigid taxonomic codes or blind phylogenetic approach.
Nematodes belonging to the Trichuris genus are prevalent soil-transmitted helminths with a worldwide distribution in mammals, while humans are mainly affected in areas with insufficient sanitation such as in Africa, Asia and South America. Traditionally, whipworms infecting primates are referred to Trichuris trichiura, but recent molecular and morphological evidence suggests that more than one species may be able to infect humans and non-human primates. Here, we analyzed the genetic diversity and phylogeny of Trichuris infecting five different non-human primate species kept in captivity using sequencing of three mitochondrial genes (cox1, rrnL and cob). Phylogenetic analyses of both single and concatenated datasets suggested the presence of two main evolutionary lineages and several highly supported clades likely existing as separate taxa. The first lineage included Trichuris infecting the mantled guereza (Colobus guereza kikuyensis), the chacma baboon (Papio ursinus) and the green monkeys (Chlorocebus spp.), clustering together with Trichuris suis; the second lineage included Trichuris infecting the Japanese macaque (Macaca fuscata) and the hamadryas baboon (Papio hamadryas), clustering together with Trichuris spp. infecting humans. These results were supported by the genetic distance between samples, which suggested that at least two taxa are able to infect macaques, baboons and humans. The present study improves our understanding of the taxonomy and evolutionary relationships among Trichuris spp. infecting primates. It moreover suggests that multiple Trichuris spp. may circulate among host species and that Trichuris in non human primates (NHPs) may be zoonotic. Further studies are important to better understand the epidemiology of Trichuris in primates and for implementing appropriate control and/or conservation measures.
- Klíčová slova
- Captive primates, Genetic diversity, Host specificity, Trichuris, Zoonosis, mtDNA,
- MeSH
- fylogeneze * MeSH
- genetická variace MeSH
- mitochondriální DNA genetika MeSH
- nemoci primátů parazitologie MeSH
- primáti MeSH
- trichurióza parazitologie veterinární MeSH
- Trichuris klasifikace genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mitochondriální DNA MeSH
Thirteen morphologically similar strains of barbatosphaeria- and tectonidula-like fungi were studied based on the comparison of cultural and morphological features of sexual and asexual morphs and phylogenetic analyses of five nuclear loci, i.e. internal transcribed spacer rDNA operon (ITS), large and small subunit nuclear ribosomal DNA, β-tubulin, and second largest subunit of RNA polymerase II. Phylogenetic results were supported by in-depth comparative analyses of common core secondary structure of ITS1 and ITS2 in all strains and the identification of non-conserved, co-evolving nucleotides that maintain base pairing in the RNA transcript. Barbatosphaeria is defined as a well-supported monophyletic clade comprising several lineages and is placed in the Sordariomycetes incertae sedis. The genus is expanded to encompass nine species with both septate and non-septate ascospores in clavate, stipitate asci with a non-amyloid apical annulus and non-stromatic ascomata with a long decumbent neck and carbonised wall often covered by pubescence. The asexual morphs are dematiaceous hyphomycetes with holoblastic conidiogenesis belonging to Ramichloridium and Sporothrix types. The morphologically similar Tectonidula, represented by the type species T. hippocrepida, grouped with members of Barbatosphaeria and is transferred to that genus. Four new species are introduced and three new combinations in Barbatosphaeria are proposed. A dichotomous key to species accepted in the genus is provided.
- Klíčová slova
- Ramichloridium, Sporothrix, Tectonidula, phylogenetics, sequence analysis, spacer regions,
- Publikační typ
- časopisecké články MeSH
The 60 000 described species of Cyclorrhapha are characterized by an unusual diversity in larval life-history traits, which range from saprophagy over phytophagy to parasitism and predation. However, the direction of evolutionary change between the different modes remains unclear. Here, we use the Scathophagidae (Diptera) for reconstructing the direction of change in this relatively small family (≈ 250 spp.) whose larval habits mirror the diversity in natural history found in Cyclorrhapha. We subjected a molecular data set for 63 species (22 genera) and DNA sequences from seven genes (12S, 16S, Cytb, COI, 28S, Ef1-alfa, Pol II) to an extensive sensitivity analysis and compare the performance of three different alignment strategies (manual, Clustal, POY). We find that the default Clustal alignment performs worst as judged by character incongruence, topological congruence and branch support. For this alignment, scoring indels as a fifth character state worsens character incongruence and topological congruence. However, manual alignment and direct optimization perform similarly well and yield near-identical trees, although branch support is lower for the direct-optimization trees. All three alignment techniques favor the upweighting of transversion. We furthermore confirm the independence of the concepts "node support" and "node stability" by documenting several cases of poorly supported nodes being very stable and cases of well supported nodes being unstable. We confirm the monophyly of the Scathophagidae, its two constituent subfamilies, and most genera. We demonstrate that phytophagy in the form of leaf mining is the ancestral larval feeding habit for Scathophagidae. From phytophagy, two shifts to saprophagy and one shift to predation has occurred while a second origin of predation is from a saprophagous ancestor.
- Publikační typ
- časopisecké články MeSH
DNA sequence data became an integral part of species characterization and identification. Still, specimens associated with a particular DNA sequence must be identified by the use of traditional morphology-based analysis and correct linking of sequence and identification must be ensured. Only a small part of DNA sequences of the genus Diplostomum (Diplostomidae) is based on adult isolates which are essential for accurate identification. In this study, we provide species identification with an aid of morphological and molecular (cox1, ITS-5.8S-ITS2 and 28S) characterization of adults of Diplostomum baeri Dubois, 1937 from naturally infected Larus canus Linnaeus in Karelia, Russia. Furthermore, we reveal that the DNA sequences of our isolates of D. baeri are identical with those of the lineage Diplostomum sp. clade Q , while other sequences labelled as the ‘D. baeri’ complex do not represent lineages of D. baeri. Our new material of cercariae from Radix balthica (Linnaeus) in Ireland is also linked to Diplostomum sp. clade Q. We reveal that D. baeri is widely distributed in Europe; as first intermediate hosts lymnaeid snails (Radix auricularia (Linnaeus), R. balthica) are used; metacercariae occur in eye lens of cyprinid fishes. In light of the convoluted taxonomy of D. baeri and other Diplostomum spp., we extend the recommendations of Blasco-Costa et al. (2016, Systematic Parasitology 93, 295–306) for the ‘best practice’ in molecular approaches to trematode systematics. The current study is another step in elucidating the species spectrum of Diplostomum based on integrative taxonomy with well-described morphology of adults linked to sequences.
- Klíčová slova
- Ireland, Laridae, Lymnaeidae, Russia, nuclear and mitochondrial DNA, trematoda,
- MeSH
- Cyprinidae * MeSH
- fylogeneze MeSH
- infekce červy třídy Trematoda * parazitologie veterinární MeSH
- nemoci ryb * parazitologie MeSH
- Trematoda * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH