PURPOSE: In carbon ion beam radiation therapy, fragmentation processes within the patient lead to changes in the composition of the particle field with increasing depth. Consequences are alterations of the resulting dose distribution and its biological effectiveness. To enable accurate treatment planning, the characteristics of the ion spectra resulting from fragmentation processes need to be known for various ion energies and target materials. In this work, we present a novel method for ion type identification using a small and highly flexible setup based on a single detector and designed to simplify measurements and overcome current shortages in available fragmentation data. MATERIALS AND METHODS: The presented approach is based on the pixelated, semiconductor detector Timepix. The large number of pixels with small pitch, all individually calibrated for energy deposition, enables detection and visualization of single particle tracks. For discrimination among different ion species, the pattern recognition analysis of the detector signal is used. Fragmentation spectra resulting from a primary carbon ion beam at various depths of tissue-equivalent material were studied to identify different ion species in mixed particle fields. The performance of the method was evaluated quantitatively using reference data from an established technique. RESULTS: All ion species resulting from carbon ion fragmentation in tissue-equivalent material could be separated. For measurements behind a 158-mm-thick water tank, the relative fractions of H, He, Be, and B ions detected agreed with corresponding reference data within the limits of uncertainty. For the relatively rare lithium ions, the agreement was within 2.3 Δref (uncertainty of reference). CONCLUSION: For designated configurations, the presented ion type identification method enables studies of therapeutic carbon ion beams with a simple, small, and configurable detection setup. The technique is promising to enable online fragmentation studies over a wide range of beam and target parameters in the future.
- Keywords
- carbon ion beam therapy, detector Timepix, ion type identification, nuclear fragmentation, pattern recognition analysis, pixel,
- Publication type
- Journal Article MeSH
Objective.This study aims to assess the composition of scattered particles generated in proton therapy for tumors situated proximal to some titanium (Ti) dental implants. The investigation involves decomposing the mixed field and recording Linear Energy Transfer (LET) spectra to quantify the influence of metallic dental inserts located behind the tumor.Approach.A therapeutic conformal proton beam was used to deliver the treatment plan to an anthropomorphic head phantom with two types of implants inserted in the target volume (made of Ti and plastic, respectively). The scattered radiation resulted during the irradiation was detected by a hybrid semiconductor pixel detector MiniPIX Timepix3 that was placed distal to the Spread-out Bragg peak. Visualization and field decomposition of stray radiation were generated using algorithms trained in particle recognition based on artificial intelligence neural networks (AI NN). Spectral sensitive aspects of the scattered radiation were collected using two angular positions of the detector relative to the beam direction: 0° and 60°.Results.Using AI NN, 3 classes of particles were identified: protons, electrons & photons, and ions & fast neutrons. Placing a Ti implant in the beam's path resulted in predominantly electrons and photons, contributing 52.2% of the total number of detected particles, whereas for plastic implants, the contribution was 65.4%. Scattered protons comprised 45.5% and 31.9% with and without metal inserts, respectively. The LET spectra were derived for each group of particles identified, with values ranging from 0.01 to 7.5 keVμm-1for Ti implants/plastic implants. The low-LET component was primarily composed of electrons and photons, while the high-LET component corresponded to protons and ions.Significance.This method, complemented by directional maps, holds the potential for evaluating and validating treatment plans involving stray radiation near organs at risk, offering precise discrimination of the mixed field, and enhancing in this way the LET calculation.
- Keywords
- LET measurements, Timepix3 detector, particle identification, particle track, proton beam, scattered radiation, titanium implants,
- MeSH
- Phantoms, Imaging * MeSH
- Humans MeSH
- Linear Energy Transfer * MeSH
- Neural Networks, Computer MeSH
- Radiotherapy Planning, Computer-Assisted methods MeSH
- Prostheses and Implants MeSH
- Proton Therapy * methods instrumentation MeSH
- Scattering, Radiation MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Secondary organic aerosols (SOAs) formed from anthropogenic or biogenic gaseous precursors in the atmosphere substantially contribute to the ambient fine particulate matter [PM ≤2.5μm in aerodynamic diameter (PM2.5)] burden, which has been associated with adverse human health effects. However, there is only limited evidence on their differential toxicological impact. OBJECTIVES: We aimed to discriminate toxicological effects of aerosols generated by atmospheric aging on combustion soot particles (SPs) of gaseous biogenic (β-pinene) or anthropogenic (naphthalene) precursors in two different lung cell models exposed at the air-liquid interface (ALI). METHODS: Mono- or cocultures of lung epithelial cells (A549) and endothelial cells (EA.hy926) were exposed at the ALI for 4 h to different aerosol concentrations of a photochemically aged mixture of primary combustion SP and β-pinene (SOAβPIN-SP) or naphthalene (SOANAP-SP). The internally mixed soot/SOA particles were comprehensively characterized in terms of their physical and chemical properties. We conducted toxicity tests to determine cytotoxicity, intracellular oxidative stress, primary and secondary genotoxicity, as well as inflammatory and angiogenic effects. RESULTS: We observed considerable toxicity-related outcomes in cells treated with either SOA type. Greater adverse effects were measured for SOANAP-SP compared with SOAβPIN-SP in both cell models, whereas the nano-sized soot cores alone showed only minor effects. At the functional level, we found that SOANAP-SP augmented the secretion of malondialdehyde and interleukin-8 and may have induced the activation of endothelial cells in the coculture system. This activation was confirmed by comet assay, suggesting secondary genotoxicity and greater angiogenic potential. Chemical characterization of PM revealed distinct qualitative differences in the composition of the two secondary aerosol types. DISCUSSION: In this study using A549 and EA.hy926 cells exposed at ALI, SOA compounds had greater toxicity than primary SPs. Photochemical aging of naphthalene was associated with the formation of more oxidized, more aromatic SOAs with a higher oxidative potential and toxicity compared with β-pinene. Thus, we conclude that the influence of atmospheric chemistry on the chemical PM composition plays a crucial role for the adverse health outcome of emissions. https://doi.org/10.1289/EHP9413.
- MeSH
- Aerosols analysis MeSH
- Endothelial Cells chemistry metabolism MeSH
- Air Pollutants * analysis toxicity MeSH
- Humans MeSH
- Particulate Matter analysis MeSH
- Lung metabolism MeSH
- Soot * MeSH
- Aged MeSH
- Aging MeSH
- Check Tag
- Humans MeSH
- Aged MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Aerosols MeSH
- Air Pollutants * MeSH
- Particulate Matter MeSH
- Soot * MeSH
Objective.This work presents a method for enhanced detection, imaging, and measurement of the thermal neutron flux.Approach. Measurements were performed in a water tank, while the detector is positioned out-of-field of a 20 MeV ultra-high pulse dose rate electron beam. A semiconductor pixel detector Timepix3 with a silicon sensor partially covered by a6LiF neutron converter was used to measure the flux, spatial, and time characteristics of the neutron field. To provide absolute measurements of thermal neutron flux, the detection efficiency calibration of the detectors was performed in a reference thermal neutron field. Neutron signals are recognized and discriminated against other particles such as gamma rays and x-rays. This is achieved by the resolving power of the pixel detector using machine learning algorithms and high-resolution pattern recognition analysis of the high-energy tracks created by thermal neutron interactions in the converter.Main results. The resulting thermal neutrons equivalent dose was obtained using conversion factor (2.13(10) pSv·cm2) from thermal neutron fluence to thermal neutron equivalent dose obtained by Monte Carlo simulations. The calibrated detectors were used to characterize scattered radiation created by electron beams. The results at 12.0 cm depth in the beam axis inside of the water for a delivered dose per pulse of 1.85 Gy (pulse length of 2.4μs) at the reference depth, showed a contribution of flux of 4.07(8) × 103particles·cm-2·s-1and equivalent dose of 1.73(3) nSv per pulse, which is lower by ∼9 orders of magnitude than the delivered dose.Significance. The presented methodology for in-water measurements and identification of characteristic thermal neutrons tracks serves for the selective quantification of equivalent dose made by thermal neutrons in out-of-field particle therapy.
- Keywords
- 6LiF converter, FLASH electron radiotherapy, Timepix3 pixel detector, equivalent dose, out-of-field dose from neutrons, particle type discrimination, thermal neutrons,
- MeSH
- Algorithms * MeSH
- Electrons * MeSH
- Calibration MeSH
- Neutrons MeSH
- Gamma Rays MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Glucuronidation of the non-steroidal anti-inflammatory chiral drug flobufen and its major metabolite M17203 has been implicated as an important mechanism of flobufen elimination. To characterize flobufen metabolism by O-glucuronidation, new liquid chromatographic method (LC) coupled with ESI-MS was developed to detect the conjugates of flobufen and its metabolites formed in vitro in rat liver microsomes. Discovery DSC-18 LT cartridge columns were utilized for solid phase extraction (SPE) and Discovery C18 column (150 mm x 2.1 mm, 5 microm particle size) was used for LC separation. Chiral inversion of flobufen and its metabolites enantiomers was checked by special 1-allyl-(5R,8S,10R)-terguride column (150 mm x 4.6 mm). O-Glucuronidation of the S-enantiomer displayed a typical Michaelis-Menten kinetics, whereas the R-enantiomer exhibited a substrate inhibition type of kinetics. The study of glucuronidation of M17203 led to kinetics with sigmoidal characteristics.
- MeSH
- Butyrates analysis MeSH
- Spectrometry, Mass, Electrospray Ionization methods MeSH
- Microsomes, Liver metabolism MeSH
- Rats MeSH
- Rats, Wistar MeSH
- Chromatography, High Pressure Liquid methods MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Butyrates MeSH
- flobufen MeSH Browser
Cosmic radiation consists of primary high-energy galactic and solar particles. When passing through spacecraft walls and astronauts' bodies, the spectrum becomes even more complex due to generating of secondary particles through fragmentation and nuclear interactions. Total radiation exposure is contributed by both these components. With an advantage, space research uses track etched detectors from the group of passive detectors visualizing the tracks of particles, in this case by etching. The detectors can discriminate between various components of cosmic radiation. A method is introduced for the separation of the different types of particles according to their range using track etched detectors. The method is demonstrated using detectors placed in Russian segment of the International Space Station in 2009. It is shown that the primary high-energy heavy ions with long range contribute up to 56% of the absorbed dose and up to 50% to the dose equivalent.
We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e(-) radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm(2)) spectroscopic Timepix detector adapted for neutron detection utilizing very thin (10)B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10(-4).
- Publication type
- Journal Article MeSH
Crystalline limestones (marbles) is a metamorphic rock that is widely used in the construction of buildings and in the manufacturing of statues. Along with dominant carbonates, marbles often contains carbonaceous matter resulting in a more or less grey colour. The Raman spectra of metamorphosed carbonaceous material (CM) were obtained in so-called graphitic marbles from several sites in the Bohemian Massif (Czech Republic). Frequencies of the major Raman bands and spectroscopic parameters such as O- and D-peak width and D/O intensity ratio were determined to characterize the various types of CM. Three types of Raman spectra allowed the discrimination between (1) well-ordered CM-graphite of high-grade regional metamorphosed marbles, (2) CM of contact metamorphosed marbles and (3) amorphous organic compounds as "disordered" CM of low-grade regional metamorphosed marbles. Raman microspectrometric analysis revealed the coexistence of carbonaceous particles exhibiting different degrees of graphitization within one marble sample. The structural state of the CM reflects the conditions of the contact or regional metamorphism and can be described by nondestructive Raman spectroscopy. For the first time, Raman spectra measured on reduced CM grains permitted one to distinguish marbles of different origin and propose their utilization in the provenance determination.
- MeSH
- Crystallization MeSH
- Microscopy MeSH
- Spectrum Analysis, Raman methods MeSH
- Calcium Carbonate analysis chemistry MeSH
- Carbon analysis MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- Calcium Carbonate MeSH
- Carbon MeSH