In the present paper, activated nano-carbon soot is derived from atmospheric flame combustion of thymol-mustard oil followed by activation with potassium hydroxide (KOH) to produce micro- and mesoporous interiors. Different forms of activated nano-carbon soot are produced by using different weight percentage ratios 1:1, 1:3, and 1:5 of precursor carbon soot (CS) to KOH and named CS11, CS13, and CS15, respectively. An increase in specific surface area and average pore volume is observed with an increase in the amount of KOH with the hierarchical network having balanced micropores as well as mesopores in CS15. The electrochemical performance of prepared activated nano-carbon soot is further investigated by the fabrication of a symmetric electric double-layer solid-state supercapacitor (SC) device utilizing a 6 M KOH electrolyte. The CS15-based device displays the highest specific capacitance (Csp) of 226.20 F/g at a current density of 0.5 A/g with energy density (Ed) 31.42 Wh/kg at a power density (Pd) of 250 W/kg. The Csp, Ed, and Pd are found to be higher than activated nano-carbon soot reported in the literature. Further, three-coin cells are fabricated using CS15 which are tested in series combination with yellow light emitting diode (LED) and are found to be able to glow LED for ~ 5 min 25 s.
- Klíčová slova
- Activated nano-carbon soot, Chemical activating agent, Energy density, Specific capacitance, Supercapacitor,
- MeSH
- elektrická kapacitance MeSH
- hořčice rodu Brassica MeSH
- hydroxidy chemie MeSH
- oleje rostlin * chemie MeSH
- poréznost MeSH
- saze * chemie MeSH
- sloučeniny draslíku chemie MeSH
- uhlík chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hydroxidy MeSH
- mustard oil MeSH Prohlížeč
- oleje rostlin * MeSH
- potassium hydroxide MeSH Prohlížeč
- saze * MeSH
- sloučeniny draslíku MeSH
- uhlík MeSH
A reliable determination of equivalent black carbon (eBC) mass concentrations derived from filter absorption photometers (FAPs) measurements depends on the appropriate quantification of the mass absorption cross-section (MAC) for converting the absorption coefficient (babs) to eBC. This study investigates the spatial-temporal variability of the MAC obtained from simultaneous elemental carbon (EC) and babs measurements performed at 22 sites. We compared different methodologies for retrieving eBC integrating different options for calculating MAC including: locally derived, median value calculated from 22 sites, and site-specific rolling MAC. The eBC concentrations that underwent correction using these methods were identified as LeBC (local MAC), MeBC (median MAC), and ReBC (Rolling MAC) respectively. Pronounced differences (up to more than 50 %) were observed between eBC as directly provided by FAPs (NeBC; Nominal instrumental MAC) and ReBC due to the differences observed between the experimental and nominal MAC values. The median MAC was 7.8 ± 3.4 m2 g-1 from 12 aethalometers at 880 nm, and 10.6 ± 4.7 m2 g-1 from 10 MAAPs at 637 nm. The experimental MAC showed significant site and seasonal dependencies, with heterogeneous patterns between summer and winter in different regions. In addition, long-term trend analysis revealed statistically significant (s.s.) decreasing trends in EC. Interestingly, we showed that the corresponding corrected eBC trends are not independent of the way eBC is calculated due to the variability of MAC. NeBC and EC decreasing trends were consistent at sites with no significant trend in experimental MAC. Conversely, where MAC showed s.s. trend, the NeBC and EC trends were not consistent while ReBC concentration followed the same pattern as EC. These results underscore the importance of accounting for MAC variations when deriving eBC measurements from FAPs and emphasize the necessity of incorporating EC observations to constrain the uncertainty associated with eBC.
- Klíčová slova
- Absorption, EC, FAPs, MAC, Rolling MAC, Site specific MAC, eBC,
- MeSH
- aerosoly analýza MeSH
- látky znečišťující vzduch * analýza MeSH
- monitorování životního prostředí metody MeSH
- pevné částice analýza MeSH
- roční období MeSH
- saze analýza MeSH
- uhlík analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aerosoly MeSH
- látky znečišťující vzduch * MeSH
- pevné částice MeSH
- saze MeSH
- uhlík MeSH
The 2017-2019 hourly particle number size distributions (PNSD) from 26 sites in Europe and 1 in the US were evaluated focusing on 16 urban background (UB) and 6 traffic (TR) sites in the framework of Research Infrastructures services reinforcing air quality monitoring capacities in European URBAN & industrial areaS (RI-URBANS) project. The main objective was to describe the phenomenology of urban ultrafine particles (UFP) in Europe with a significant air quality focus. The varying lower size detection limits made it difficult to compare PN concentrations (PNC), particularly PN10-25, from different cities. PNCs follow a TR > UB > Suburban (SUB) order. PNC and Black Carbon (BC) progressively increase from Northern Europe to Southern Europe and from Western to Eastern Europe. At the UB sites, typical traffic rush hour PNC peaks are evident, many also showing midday-morning PNC peaks anti-correlated with BC. These peaks result from increased PN10-25, suggesting significant PNC contributions from nucleation, fumigation and shipping. Site types to be identified by daily and seasonal PNC and BC patterns are: (i) PNC mainly driven by traffic emissions, with marked correlations with BC on different time scales; (ii) marked midday/morning PNC peaks and a seasonal anti-correlation with PNC/BC; (iii) both traffic peaks and midday peaks without marked seasonal patterns. Groups (ii) and (iii) included cities with high insolation. PNC, especially PN25-800, was positively correlated with BC, NO2, CO and PM for several sites. The variable correlation of PNSD with different urban pollutants demonstrates that these do not reflect the variability of UFP in urban environments. Specific monitoring of PNSD is needed if nanoparticles and their associated health impacts are to be assessed. Implementation of the CEN-ACTRIS recommendations for PNSD measurements would provide comparable measurements, and measurements of <10 nm PNC are needed for full evaluation of the health effects of this size fraction.
- Klíčová slova
- Aerosols, Air quality, Atmospheric particulate matter, Nanoparticles, Particle number concentrations, Urban environment,
- MeSH
- látky znečišťující vzduch * analýza MeSH
- monitorování životního prostředí MeSH
- pevné částice analýza MeSH
- saze MeSH
- velikost částic MeSH
- velkoměsta MeSH
- výfukové emise vozidel analýza MeSH
- znečištění ovzduší * analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- velkoměsta MeSH
- Názvy látek
- látky znečišťující vzduch * MeSH
- pevné částice MeSH
- saze MeSH
- výfukové emise vozidel MeSH
It is pivotal to precisely detect food preservatives to ascertain food quality and safety. In this work, we report the sensitive electrochemical detection of widely used cytotoxic food preservative tert-butylhydroquinone (TBHQ). A novel nanocomposite was sonochemically prepared by embedding ternary metal oxide (TMO) comprising ZnO, CuO, and MgO in β-cyclodextrin (β-CD) functionalized carbon black (CB). The properties of the prepared nanocomposite were evaluated by employing multiple characterization methods. The nanocomposite fabricated on a screen printed carbon electrode exhibited exceptional electrocatalytic activity towards TBHQ detection, evident from the resultant very low detection limit of 1 nM and high sensitivity of 22.67 μA μM-1 cm-2. Moreover, the developed TBHQ sensor evinced all the important traits of a good electrochemical sensor including excellent selectivity, stability, reproducibility, and repeatability. Furthermore, for validating practical feasibility of TBHQ detection, we successfully determined this food additive in edible oils.
- Klíčová slova
- Cyclodextrin, Electrochemical sensor, Food preservative, TBHQ, Ternary metal oxide,
- MeSH
- beta-cyklodextriny * MeSH
- elektrochemické techniky MeSH
- elektrody MeSH
- hydrochinony MeSH
- oleje rostlin MeSH
- oxidy MeSH
- potravinářské přísady * MeSH
- reprodukovatelnost výsledků MeSH
- saze MeSH
- uhlík MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 2-tert-butylhydroquinone MeSH Prohlížeč
- beta-cyklodextriny * MeSH
- hydrochinony MeSH
- oleje rostlin MeSH
- oxidy MeSH
- potravinářské přísady * MeSH
- saze MeSH
- uhlík MeSH
BACKGROUND: Secondary organic aerosols (SOAs) formed from anthropogenic or biogenic gaseous precursors in the atmosphere substantially contribute to the ambient fine particulate matter [PM ≤2.5μm in aerodynamic diameter (PM2.5)] burden, which has been associated with adverse human health effects. However, there is only limited evidence on their differential toxicological impact. OBJECTIVES: We aimed to discriminate toxicological effects of aerosols generated by atmospheric aging on combustion soot particles (SPs) of gaseous biogenic (β-pinene) or anthropogenic (naphthalene) precursors in two different lung cell models exposed at the air-liquid interface (ALI). METHODS: Mono- or cocultures of lung epithelial cells (A549) and endothelial cells (EA.hy926) were exposed at the ALI for 4 h to different aerosol concentrations of a photochemically aged mixture of primary combustion SP and β-pinene (SOAβPIN-SP) or naphthalene (SOANAP-SP). The internally mixed soot/SOA particles were comprehensively characterized in terms of their physical and chemical properties. We conducted toxicity tests to determine cytotoxicity, intracellular oxidative stress, primary and secondary genotoxicity, as well as inflammatory and angiogenic effects. RESULTS: We observed considerable toxicity-related outcomes in cells treated with either SOA type. Greater adverse effects were measured for SOANAP-SP compared with SOAβPIN-SP in both cell models, whereas the nano-sized soot cores alone showed only minor effects. At the functional level, we found that SOANAP-SP augmented the secretion of malondialdehyde and interleukin-8 and may have induced the activation of endothelial cells in the coculture system. This activation was confirmed by comet assay, suggesting secondary genotoxicity and greater angiogenic potential. Chemical characterization of PM revealed distinct qualitative differences in the composition of the two secondary aerosol types. DISCUSSION: In this study using A549 and EA.hy926 cells exposed at ALI, SOA compounds had greater toxicity than primary SPs. Photochemical aging of naphthalene was associated with the formation of more oxidized, more aromatic SOAs with a higher oxidative potential and toxicity compared with β-pinene. Thus, we conclude that the influence of atmospheric chemistry on the chemical PM composition plays a crucial role for the adverse health outcome of emissions. https://doi.org/10.1289/EHP9413.
- MeSH
- aerosoly analýza MeSH
- endoteliální buňky chemie metabolismus MeSH
- látky znečišťující vzduch * analýza toxicita MeSH
- lidé MeSH
- pevné částice analýza MeSH
- plíce metabolismus MeSH
- saze * MeSH
- senioři MeSH
- stárnutí MeSH
- Check Tag
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aerosoly MeSH
- látky znečišťující vzduch * MeSH
- pevné částice MeSH
- saze * MeSH
Waste scrap tyres were thermally decomposed at the temperature of 600 °C and heating rate of 10 °C·min-1. Decomposition was followed by the TG analysis. The resulting pyrolytic carbon black was chemically activated by a KOH solution at 800 °C. Activated and non-activated carbon black were investigated using high pressure thermogravimetry, where adsorption isotherms of N2, CO2, and cyclohexane were determined. Isotherms were determined over a wide range of pressure, 0.03-4.5 MPa for N2 and 0.03-2 MPa for CO2. In non-activated carbon black, for the same pressure and temperature, a five times greater gas uptake of CO2 than N2 was determined. Contrary to non-activated carbon black, activated carbon black showed improved textural properties with a well-developed irregular mesoporous-macroporous structure with a significant amount of micropores. The sorption capacity of pyrolytic carbon black was also increased by activation. The uptake of CO2 was three times and for cyclohexane ten times higher in activated carbon black than in the non-activated one. Specific surface areas evaluated from linearized forms of Langmuir isotherm and the BET isotherm revealed that for both methods, the values are comparable for non-activated carbon black measured by CO2 and for activated carbon black measured by cyclohexane. It was found out that the N2 sorption capacity of carbon black depends only on its specific surface area size, contrary to CO2 sorption capacity, which is affected by both the size of specific surface area and the nature of carbon black.
- Klíčová slova
- CO2, N2, carbon black, cyclohexane, sorption, waste scrap tyres,
- MeSH
- dusík chemie MeSH
- odpadky - odstraňování * MeSH
- oxid uhličitý analýza MeSH
- saze chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusík MeSH
- oxid uhličitý MeSH
- saze MeSH
The combustion of biomass in boilers of emission classes 2 and 3 produces deposits in the form of char and soot inside the combustion chamber. Char and soot differ in content of elemental carbon (EC) and organic carbon (OC) as well as in the content of organic compounds. Deposits from boilers of emission class 2 contain higher amounts of OC and EC than those from boilers of emission class 3. The only exception is deposits formed by the combustion of briquettes from hardwood in boilers of emission class 3 that contained approximately by up to 60 percent higher amount of OC and by approx. 100% more EC than deposits from combustion in boilers of emission class 2. Deposits identified as char are characterized by dominant organic compounds derived from thermic degradation of cellulose, lignin, phytosterols, terpenes, their alteration products, and aromatic hydrocarbons. Deposits identified as soot have dominant PAHs, compounds containing oxygen (furans, benzofurans, phenols) and compounds containing aliphatic nitrogen (benzonitrile). Char from boilers of emission class 2 contains approx. by 80% more alkanes and cycloalkanes, by 80% more nitriles, by 50% more carboxyl acids, by 230% more anhydrosaccharides, phytosterols and by 180% more PAHs. These differences can be utilized for identification of burned fuel.
- Klíčová slova
- Biomass, Char, Combustion, Py-GC/MS, Residential heating, Soot,
- MeSH
- biomasa MeSH
- dusík MeSH
- látky znečišťující vzduch * MeSH
- polycyklické aromatické uhlovodíky * MeSH
- saze MeSH
- uhlík MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusík MeSH
- látky znečišťující vzduch * MeSH
- polycyklické aromatické uhlovodíky * MeSH
- saze MeSH
- uhlík MeSH
Recent assessments have analyzed the health impacts of PM2.5 from emissions from different locations and sectors using simplified or reduced-form air quality models. Here we present an alternative approach using the adjoint of the Community Multiscale Air Quality (CMAQ) model, which provides source-receptor relationships at highly resolved sectoral, spatial, and temporal scales. While damage resulting from anthropogenic emissions of BC is strongly correlated with population and premature death, we found little correlation between damage and emission magnitude, suggesting that controls on the largest emissions may not be the most efficient means of reducing damage resulting from anthropogenic BC emissions. Rather, the best proxy for locations with damaging BC emissions is locations where premature deaths occur. Onroad diesel and nonroad vehicle emissions are the largest contributors to premature deaths attributed to exposure to BC, while onroad gasoline emissions cause the highest deaths per amount emitted. Emissions in fall and winter contribute to more premature deaths (and more per amount emitted) than emissions in spring and summer. Overall, these results show the value of the high-resolution source attribution for determining the locations, seasons, and sectors for which BC emission controls have the most effective health benefits.
- MeSH
- benzin škodlivé účinky MeSH
- látky znečišťující vzduch škodlivé účinky MeSH
- lidé MeSH
- monitorování životního prostředí MeSH
- předčasná smrt * MeSH
- roční období MeSH
- saze škodlivé účinky MeSH
- teoretické modely * MeSH
- výfukové emise vozidel toxicita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- srovnávací studie MeSH
- Geografické názvy
- Spojené státy americké MeSH
- Názvy látek
- benzin MeSH
- látky znečišťující vzduch MeSH
- saze MeSH
- výfukové emise vozidel MeSH
The effect of exposure to 100 mg/L zinc oxide (nZnO), fullerene soot (FS) or titanium dioxide (nTiO(2)) nanoparticles on gene expression in Arabidopsis thaliana roots was studied using microarrays. After 7d, nZnO, FS, or nTiO(2) exposure resulted in 660 up- and 826 down-regulated genes, 232 up- and 189 down-regulated genes, and 80 up- and 74 down-regulated genes, respectively (expression difference>2-fold; p[t test]<0.05). The genes induced by nZnO and FS include mainly ontology groups annotated as stress responsive, including both abiotic (oxidative, salt, water deprivation) and biotic (wounding and defense to pathogens) stimuli. The down-regulated genes upon nZnO exposure were involved in cell organization and biogenesis, including translation, nucleosome assembly and microtubule based process. FS largely repressed the transcription of genes involved in electron transport and energy pathways. Only mild changes in gene expression were observed upon nTiO(2) exposure, which resulted in up- and down-regulation of genes involved mainly in responses to biotic and abiotic stimuli. The data clearly indicate that the mechanisms of phytotoxicity are highly nanoparticle dependent despite of a limited overlap in gene expression response.
- MeSH
- Arabidopsis účinky léků genetika MeSH
- down regulace MeSH
- exprese genu účinky léků MeSH
- fullereny chemie toxicita MeSH
- kořeny rostlin účinky léků genetika MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- látky znečišťující životní prostředí chemie toxicita MeSH
- nanočástice chemie toxicita MeSH
- oxid zinečnatý chemie toxicita MeSH
- RNA rostlin genetika MeSH
- saze chemie toxicita MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- titan chemie toxicita MeSH
- transkriptom * MeSH
- upregulace MeSH
- velikost částic MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fullereny MeSH
- látky znečišťující životní prostředí MeSH
- oxid zinečnatý MeSH
- RNA rostlin MeSH
- saze MeSH
- titan MeSH
- titanium dioxide MeSH Prohlížeč
Thin black surface layers or black coloured gypsum crusts can be observed on stones of many buildings and sculptures around the world. The black weathered stone and mortar surface from selected sections of the Prague Castle were studied by microscopic methods, GC/MS and pyrolysis-GC/MS analysis. Microscopically, we found an authigenic gypsum formation with an outer layer of an admixture of fine grains of quartz, clay minerals, thermally altered clay minerals, fly ash, and carbonaceous particles of natural and anthropogenic origin particularly chars, cokes, soots. Noncarbonate C content ranged between 0.8% and 4.3%. Phtalates dominated in extracts from the samples and benzonitrile had the greatest abundance in the pyrolysis products. The identified organic particles and compounds are known to result from human activities.
- MeSH
- konstrukční materiály * MeSH
- kyseliny ftalové analýza MeSH
- látky znečišťující vzduch analýza MeSH
- monitorování životního prostředí metody MeSH
- nitrily analýza MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- polarizační mikroskopie MeSH
- saze analýza MeSH
- síran vápenatý analýza MeSH
- uhlík analýza MeSH
- velkoměsta MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- velkoměsta MeSH
- Názvy látek
- benzonitrile MeSH Prohlížeč
- kyseliny ftalové MeSH
- látky znečišťující vzduch MeSH
- nitrily MeSH
- saze MeSH
- síran vápenatý MeSH
- uhlík MeSH