-
Something wrong with this record ?
High-dimensional entropy estimation for finite accuracy data: R-NN entropy estimator
Kybic, J.
Language English Country Germany
- MeSH
- Algorithms MeSH
- Entropy MeSH
- Financing, Organized MeSH
- Image Interpretation, Computer-Assisted methods MeSH
- Magnetic Resonance Imaging methods MeSH
- Brain anatomy & histology MeSH
- Reproducibility of Results MeSH
- Pattern Recognition, Automated methods MeSH
- Sensitivity and Specificity MeSH
- Artificial Intelligence MeSH
- Image Enhancement methods MeSH
We address the problem of entropy estimation for high-dimensional finite-accuracy data. Our main application is evaluating high-order mutual information image similarity criteria for multimodal image registration. The basis of our method is an estimator based on k-th nearest neighbor (NN) distances, modified so that only distances greater than some constant R are evaluated. This modification requires a correction which is found numerically in a preprocessing step using quadratic programming. We compare experimentally our new method with k-NN and histogram estimators on synthetic data as well as for evaluation of mutual information for image similarity.
- 000
- 00000naa 2200000 a 4500
- 001
- bmc10000580
- 003
- CZ-PrNML
- 005
- 20180117140651.0
- 008
- 100112s2007 gw e eng||
- 009
- AR
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Kybic, Jan, $d 1974- $7 xx0028484
- 245 10
- $a High-dimensional entropy estimation for finite accuracy data: R-NN entropy estimator / $c Kybic, J.
- 314 __
- $a Center for Machine Perception, Czech Technical University, Prague, Czech Republic. kybic@fel.cvut.cz
- 520 9_
- $a We address the problem of entropy estimation for high-dimensional finite-accuracy data. Our main application is evaluating high-order mutual information image similarity criteria for multimodal image registration. The basis of our method is an estimator based on k-th nearest neighbor (NN) distances, modified so that only distances greater than some constant R are evaluated. This modification requires a correction which is found numerically in a preprocessing step using quadratic programming. We compare experimentally our new method with k-NN and histogram estimators on synthetic data as well as for evaluation of mutual information for image similarity.
- 650 _2
- $a financování organizované $7 D005381
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a umělá inteligence $7 D001185
- 650 _2
- $a mozek $x anatomie a histologie $7 D001921
- 650 _2
- $a entropie $7 D019277
- 650 _2
- $a vylepšení obrazu $x metody $7 D007089
- 650 _2
- $a interpretace obrazu počítačem $x metody $7 D007090
- 650 _2
- $a magnetická rezonanční tomografie $x metody $7 D008279
- 650 _2
- $a rozpoznávání automatizované $x metody $7 D010363
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a senzitivita a specificita $7 D012680
- 773 0_
- $w MED00194109 $t Information processing in medical imaging $g Roč. 20(2007), s. 569-580 $x 1011-2499
- 910 __
- $a ABA008 $b x $y 8 $z 0
- 990 __
- $a 20090310084605 $b ABA008
- 991 __
- $a 20180117140926 $b ABA008
- 999 __
- $a ok $b bmc $g 703309 $s 565742
- BAS __
- $a 3
- BMC __
- $a 2007 $b 20 $d 569-580 $m Information processing in medical imaging $x MED00194109 $i 1011-2499
- LZP __
- $a 2010-b1/ipme