• Something wrong with this record ?

High-dimensional entropy estimation for finite accuracy data: R-NN entropy estimator

Kybic, J.

. 2007 ; 20 () : 569-580.

Language English Country Germany

We address the problem of entropy estimation for high-dimensional finite-accuracy data. Our main application is evaluating high-order mutual information image similarity criteria for multimodal image registration. The basis of our method is an estimator based on k-th nearest neighbor (NN) distances, modified so that only distances greater than some constant R are evaluated. This modification requires a correction which is found numerically in a preprocessing step using quadratic programming. We compare experimentally our new method with k-NN and histogram estimators on synthetic data as well as for evaluation of mutual information for image similarity.

000      
00000naa 2200000 a 4500
001      
bmc10000580
003      
CZ-PrNML
005      
20180117140651.0
008      
100112s2007 gw e eng||
009      
AR
040    __
$a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Kybic, Jan, $d 1974- $7 xx0028484
245    10
$a High-dimensional entropy estimation for finite accuracy data: R-NN entropy estimator / $c Kybic, J.
314    __
$a Center for Machine Perception, Czech Technical University, Prague, Czech Republic. kybic@fel.cvut.cz
520    9_
$a We address the problem of entropy estimation for high-dimensional finite-accuracy data. Our main application is evaluating high-order mutual information image similarity criteria for multimodal image registration. The basis of our method is an estimator based on k-th nearest neighbor (NN) distances, modified so that only distances greater than some constant R are evaluated. This modification requires a correction which is found numerically in a preprocessing step using quadratic programming. We compare experimentally our new method with k-NN and histogram estimators on synthetic data as well as for evaluation of mutual information for image similarity.
650    _2
$a financování organizované $7 D005381
650    _2
$a algoritmy $7 D000465
650    _2
$a umělá inteligence $7 D001185
650    _2
$a mozek $x anatomie a histologie $7 D001921
650    _2
$a entropie $7 D019277
650    _2
$a vylepšení obrazu $x metody $7 D007089
650    _2
$a interpretace obrazu počítačem $x metody $7 D007090
650    _2
$a magnetická rezonanční tomografie $x metody $7 D008279
650    _2
$a rozpoznávání automatizované $x metody $7 D010363
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a senzitivita a specificita $7 D012680
773    0_
$w MED00194109 $t Information processing in medical imaging $g Roč. 20(2007), s. 569-580 $x 1011-2499
910    __
$a ABA008 $b x $y 8 $z 0
990    __
$a 20090310084605 $b ABA008
991    __
$a 20180117140926 $b ABA008
999    __
$a ok $b bmc $g 703309 $s 565742
BAS    __
$a 3
BMC    __
$a 2007 $b 20 $d 569-580 $m Information processing in medical imaging $x MED00194109 $i 1011-2499
LZP    __
$a 2010-b1/ipme

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...