-
Je něco špatně v tomto záznamu ?
Profiling of polychromatic flow cytometry data on B-cells reveals patients' clusters in common variable immunodeficiency
T. Kalina, J. Stuchlý, A. Janda, O. Hrušák, S. Růžičková, A. Šedivá, J. Litzman, M. Vlková
Jazyk angličtina Země Spojené státy americké
Typ dokumentu práce podpořená grantem
Grantová podpora
NR9198
MZ0
CEP - Centrální evidence projektů
Digitální knihovna NLK
Plný text - Část
Zdroj
NLK
Free Medical Journals
od 2003 do Před 1 rokem
Wiley Online Library (archiv)
od 1980-01-01 do 2012-12-31
Wiley Free Content
od 2003
PubMed
19802875
DOI
10.1002/cyto.a.20801
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- analýza hlavních komponent MeSH
- B-lymfocyty imunologie MeSH
- běžná variabilní imunodeficience diagnóza klasifikace krev MeSH
- dospělí MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- pravděpodobnost MeSH
- průtoková cytometrie metody MeSH
- senioři MeSH
- shluková analýza MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- práce podpořená grantem MeSH
The aim of this study was to find an objective computational approach for phenotype analysis of common variable immunodeficiency (CVID) patients that describes all differences in the six-color space and to form groups of patients using computational methods. CVID is a heterogeneous primary immunodeficiency disorder where molecular defect is recognized in <10% of the cases and is unknown in the majority of patients. The current CVID classification, EUROClass, is based on quantification of selected B-cell subsets. Using six-color polychromatic flow cytometry, we analyzed B-cell phenotypes in a cohort of 48 CVID patients and 49 healthy donors. We used a "probability binning" algorithm to create 1,024 bins (each bin is a six-color gate) that covered the cells' distribution within the entire B-cell compartment. A matrix file recording cellular content in all the bins was made. The hierarchical clustering of the individual samples was analyzed using a Pearson correlation of the bins' values. The Cut tree algorithm found 12 clusters. In six clusters, healthy individuals predominated; in one cluster, smB+CD21low (CVID patients by EUROClass) cells prevailed; in one cluster, smB-CD21norm cells prevailed; in one cluster, smB+CD21low cells prevailed; the remaining cluster was mixed. The overall reproducibility of probability binning clustering was confirmed by matching of replicates to the original cohort using the similarity matrix of the Pearson correlation, 15 replicates matched the same individual, three replicates matched a different individual within the same cluster, and three replicates matched to a different cluster. We were able to define B-cell subsets over- or under-represented in a particular cluster and display them back in the flow cytometry software. We describe a new analytical approach that enables a search in an objective computational environment for patient cohorts that are defined by similar B-cell profiles and thus contribute to the description of differences between CVID patient groups. Copyright 2009 International Society for Advancement of Cytometry.
Citace poskytuje Crossref.org
- 000
- 04052naa a2200505 a 4500
- 001
- bmc12008545
- 003
- CZ-PrNML
- 005
- 20130315131119.0
- 008
- 120316s2009 xxu eng||
- 009
- AR
- 024 __
- $a 10.1002/cyto.a.20801 $2 doi
- 035 __
- $a (PubMed)19802875
- 040 __
- $a ABA008 $b cze $d ABA008
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Kalina, Tomáš, $d 1975 říjen 11.- $7 xx0060125 $u Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University Prague and University Hospital Motol, Prague, Czech Republic. tomas.kalina@lfmotol.cuni.cz
- 245 10
- $a Profiling of polychromatic flow cytometry data on B-cells reveals patients' clusters in common variable immunodeficiency $c T. Kalina, J. Stuchlý, A. Janda, O. Hrušák, S. Růžičková, A. Šedivá, J. Litzman, M. Vlková
- 520 9_
- $a The aim of this study was to find an objective computational approach for phenotype analysis of common variable immunodeficiency (CVID) patients that describes all differences in the six-color space and to form groups of patients using computational methods. CVID is a heterogeneous primary immunodeficiency disorder where molecular defect is recognized in <10% of the cases and is unknown in the majority of patients. The current CVID classification, EUROClass, is based on quantification of selected B-cell subsets. Using six-color polychromatic flow cytometry, we analyzed B-cell phenotypes in a cohort of 48 CVID patients and 49 healthy donors. We used a "probability binning" algorithm to create 1,024 bins (each bin is a six-color gate) that covered the cells' distribution within the entire B-cell compartment. A matrix file recording cellular content in all the bins was made. The hierarchical clustering of the individual samples was analyzed using a Pearson correlation of the bins' values. The Cut tree algorithm found 12 clusters. In six clusters, healthy individuals predominated; in one cluster, smB+CD21low (CVID patients by EUROClass) cells prevailed; in one cluster, smB-CD21norm cells prevailed; in one cluster, smB+CD21low cells prevailed; the remaining cluster was mixed. The overall reproducibility of probability binning clustering was confirmed by matching of replicates to the original cohort using the similarity matrix of the Pearson correlation, 15 replicates matched the same individual, three replicates matched a different individual within the same cluster, and three replicates matched to a different cluster. We were able to define B-cell subsets over- or under-represented in a particular cluster and display them back in the flow cytometry software. We describe a new analytical approach that enables a search in an objective computational environment for patient cohorts that are defined by similar B-cell profiles and thus contribute to the description of differences between CVID patient groups. Copyright 2009 International Society for Advancement of Cytometry.
- 590 __
- $a bohemika - dle Pubmed
- 650 02
- $a mladiství $7 D000293
- 650 02
- $a dospělí $7 D000328
- 650 02
- $a senioři $7 D000368
- 650 02
- $a algoritmy $7 D000465
- 650 02
- $a B-lymfocyty $x imunologie $7 D001402
- 650 02
- $a studie případů a kontrol $7 D016022
- 650 02
- $a shluková analýza $7 D016000
- 650 02
- $a kohortové studie $7 D015331
- 650 02
- $a běžná variabilní imunodeficience $x diagnóza $x klasifikace $x krev $7 D017074
- 650 02
- $a ženské pohlaví $7 D005260
- 650 02
- $a průtoková cytometrie $x metody $7 D005434
- 650 02
- $a lidé $7 D006801
- 650 02
- $a mužské pohlaví $7 D008297
- 650 02
- $a lidé středního věku $7 D008875
- 650 02
- $a analýza hlavních komponent $7 D025341
- 650 02
- $a pravděpodobnost $7 D011336
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Stuchlý, Jan $7 xx0143777
- 700 1_
- $a Janda, Aleš, $d 1974- $7 mzk2007382260
- 700 1_
- $a Hrušák, Ondřej, $d 1965- $7 xx0036691
- 700 1_
- $a Růžičková, Šárka, $d 1965- $7 jo2002102934
- 700 1_
- $a Šedivá, Anna, $d 1955- $7 xx0000191
- 700 1_
- $a Litzman, Jiří, $7 xx0000488 $d 1958-
- 700 1_
- $a Vlková, Marcela $7 xx0126233
- 773 0_
- $t Cytometry Part A: The Journal of the International Society for Analytical Cytology $p Cytometry A $g Roč. 75, č. 11 (2009), s. 902-909 $w MED00013935 $x 0143-2044
- 773 0_
- $p Cytometry A $g 75(11):902-9, 2009 Nov
- 910 __
- $a ABA008 $b x $y 4
- 990 __
- $a 20120319124512 $b ABA008
- 991 __
- $a 20130315131335 $b ABA008
- 999 __
- $a ok $b bmc $g 901913 $s 765440
- BAS __
- $a 3
- BMC __
- $a 2009 $b 75 $c 11 $d 902-909 $m Cytometry. Part A $x MED00013935
- GRA __
- $a NR9198 $p MZ0
- LZP __
- $a 2012-1Q10/jj