Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Profiling of polychromatic flow cytometry data on B-cells reveals patients' clusters in common variable immunodeficiency

T. Kalina, J. Stuchlý, A. Janda, O. Hrušák, S. Růžičková, A. Šedivá, J. Litzman, M. Vlková

. 2009 ; 75 (11) : 902-909.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc12008545

Grantová podpora
NR9198 MZ0 CEP - Centrální evidence projektů

The aim of this study was to find an objective computational approach for phenotype analysis of common variable immunodeficiency (CVID) patients that describes all differences in the six-color space and to form groups of patients using computational methods. CVID is a heterogeneous primary immunodeficiency disorder where molecular defect is recognized in <10% of the cases and is unknown in the majority of patients. The current CVID classification, EUROClass, is based on quantification of selected B-cell subsets. Using six-color polychromatic flow cytometry, we analyzed B-cell phenotypes in a cohort of 48 CVID patients and 49 healthy donors. We used a "probability binning" algorithm to create 1,024 bins (each bin is a six-color gate) that covered the cells' distribution within the entire B-cell compartment. A matrix file recording cellular content in all the bins was made. The hierarchical clustering of the individual samples was analyzed using a Pearson correlation of the bins' values. The Cut tree algorithm found 12 clusters. In six clusters, healthy individuals predominated; in one cluster, smB+CD21low (CVID patients by EUROClass) cells prevailed; in one cluster, smB-CD21norm cells prevailed; in one cluster, smB+CD21low cells prevailed; the remaining cluster was mixed. The overall reproducibility of probability binning clustering was confirmed by matching of replicates to the original cohort using the similarity matrix of the Pearson correlation, 15 replicates matched the same individual, three replicates matched a different individual within the same cluster, and three replicates matched to a different cluster. We were able to define B-cell subsets over- or under-represented in a particular cluster and display them back in the flow cytometry software. We describe a new analytical approach that enables a search in an objective computational environment for patient cohorts that are defined by similar B-cell profiles and thus contribute to the description of differences between CVID patient groups. Copyright 2009 International Society for Advancement of Cytometry.

Citace poskytuje Crossref.org

000      
04052naa a2200505 a 4500
001      
bmc12008545
003      
CZ-PrNML
005      
20130315131119.0
008      
120316s2009 xxu eng||
009      
AR
024    __
$a 10.1002/cyto.a.20801 $2 doi
035    __
$a (PubMed)19802875
040    __
$a ABA008 $b cze $d ABA008
041    0_
$a eng
044    __
$a xxu
100    1_
$a Kalina, Tomáš, $d 1975 říjen 11.- $7 xx0060125 $u Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University Prague and University Hospital Motol, Prague, Czech Republic. tomas.kalina@lfmotol.cuni.cz
245    10
$a Profiling of polychromatic flow cytometry data on B-cells reveals patients' clusters in common variable immunodeficiency $c T. Kalina, J. Stuchlý, A. Janda, O. Hrušák, S. Růžičková, A. Šedivá, J. Litzman, M. Vlková
520    9_
$a The aim of this study was to find an objective computational approach for phenotype analysis of common variable immunodeficiency (CVID) patients that describes all differences in the six-color space and to form groups of patients using computational methods. CVID is a heterogeneous primary immunodeficiency disorder where molecular defect is recognized in <10% of the cases and is unknown in the majority of patients. The current CVID classification, EUROClass, is based on quantification of selected B-cell subsets. Using six-color polychromatic flow cytometry, we analyzed B-cell phenotypes in a cohort of 48 CVID patients and 49 healthy donors. We used a "probability binning" algorithm to create 1,024 bins (each bin is a six-color gate) that covered the cells' distribution within the entire B-cell compartment. A matrix file recording cellular content in all the bins was made. The hierarchical clustering of the individual samples was analyzed using a Pearson correlation of the bins' values. The Cut tree algorithm found 12 clusters. In six clusters, healthy individuals predominated; in one cluster, smB+CD21low (CVID patients by EUROClass) cells prevailed; in one cluster, smB-CD21norm cells prevailed; in one cluster, smB+CD21low cells prevailed; the remaining cluster was mixed. The overall reproducibility of probability binning clustering was confirmed by matching of replicates to the original cohort using the similarity matrix of the Pearson correlation, 15 replicates matched the same individual, three replicates matched a different individual within the same cluster, and three replicates matched to a different cluster. We were able to define B-cell subsets over- or under-represented in a particular cluster and display them back in the flow cytometry software. We describe a new analytical approach that enables a search in an objective computational environment for patient cohorts that are defined by similar B-cell profiles and thus contribute to the description of differences between CVID patient groups. Copyright 2009 International Society for Advancement of Cytometry.
590    __
$a bohemika - dle Pubmed
650    02
$a mladiství $7 D000293
650    02
$a dospělí $7 D000328
650    02
$a senioři $7 D000368
650    02
$a algoritmy $7 D000465
650    02
$a B-lymfocyty $x imunologie $7 D001402
650    02
$a studie případů a kontrol $7 D016022
650    02
$a shluková analýza $7 D016000
650    02
$a kohortové studie $7 D015331
650    02
$a běžná variabilní imunodeficience $x diagnóza $x klasifikace $x krev $7 D017074
650    02
$a ženské pohlaví $7 D005260
650    02
$a průtoková cytometrie $x metody $7 D005434
650    02
$a lidé $7 D006801
650    02
$a mužské pohlaví $7 D008297
650    02
$a lidé středního věku $7 D008875
650    02
$a analýza hlavních komponent $7 D025341
650    02
$a pravděpodobnost $7 D011336
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Stuchlý, Jan $7 xx0143777
700    1_
$a Janda, Aleš, $d 1974- $7 mzk2007382260
700    1_
$a Hrušák, Ondřej, $d 1965- $7 xx0036691
700    1_
$a Růžičková, Šárka, $d 1965- $7 jo2002102934
700    1_
$a Šedivá, Anna, $d 1955- $7 xx0000191
700    1_
$a Litzman, Jiří, $7 xx0000488 $d 1958-
700    1_
$a Vlková, Marcela $7 xx0126233
773    0_
$t Cytometry Part A: The Journal of the International Society for Analytical Cytology $p Cytometry A $g Roč. 75, č. 11 (2009), s. 902-909 $w MED00013935 $x 0143-2044
773    0_
$p Cytometry A $g 75(11):902-9, 2009 Nov
910    __
$a ABA008 $b x $y 4
990    __
$a 20120319124512 $b ABA008
991    __
$a 20130315131335 $b ABA008
999    __
$a ok $b bmc $g 901913 $s 765440
BAS    __
$a 3
BMC    __
$a 2009 $b 75 $c 11 $d 902-909 $m Cytometry. Part A $x MED00013935
GRA    __
$a NR9198 $p MZ0
LZP    __
$a 2012-1Q10/jj

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé