-
Je něco špatně v tomto záznamu ?
Automatic colposcopy video tissue classification using higher order entropy-based image registration
JD. García-Arteaga, J. Kybic, W. Li
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
ProQuest Central
od 2003-01-01 do 2023-12-31
Nursing & Allied Health Database (ProQuest)
od 2003-01-01 do 2023-12-31
Health & Medicine (ProQuest)
od 2003-01-01 do 2023-12-31
- MeSH
- algoritmy MeSH
- cervix uteri patologie MeSH
- databáze faktografické MeSH
- diagnóza počítačová metody MeSH
- dospělí MeSH
- kolposkopie metody MeSH
- kyselina octová chemie MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory děložního čípku diagnóza MeSH
- počítačové zpracování obrazu metody MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Colposcopy is a well-established method to detect and diagnose intraepithelial lesions and uterine cervical cancer in early stages. During the exam color and texture changes are induced by the application of a contrast agent (e.g.3-5% acetic acid solution or iodine). Our aim is to densely quantify the change in the acetowhite decay level for a sequence of images captured during a colposcopy exam to help the physician in his diagnosis providing new tools that overcome subjectivity and improve reproducibility. As the change in acetowhite decay level must be calculated from the same tissue point in all images, we present an elastic image registration scheme able to compensate patient, camera and tissue movement robustly in cervical images. The image registration is based on a novel multi-feature entropy similarity criterion. Temporal features are then extracted using the color properties of the aligned image sequence and a dual compartment tissue model of the cervix. An example of the use of the temporal features for pixel-wise classification is presented and the results are compared against ground truth histopathological annotations.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12022191
- 003
- CZ-PrNML
- 005
- 20160304131252.0
- 007
- ta
- 008
- 120806s2011 xxu f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.compbiomed.2011.07.010 $2 doi
- 035 __
- $a (PubMed)21890126
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a García-Arteaga, Juan D. $u Center for Machine Perception, Czech Technical University, Department of Cybernetics, Faculty of Electrical Engineering, Prague, Czech Republic
- 245 10
- $a Automatic colposcopy video tissue classification using higher order entropy-based image registration / $c JD. García-Arteaga, J. Kybic, W. Li
- 520 9_
- $a Colposcopy is a well-established method to detect and diagnose intraepithelial lesions and uterine cervical cancer in early stages. During the exam color and texture changes are induced by the application of a contrast agent (e.g.3-5% acetic acid solution or iodine). Our aim is to densely quantify the change in the acetowhite decay level for a sequence of images captured during a colposcopy exam to help the physician in his diagnosis providing new tools that overcome subjectivity and improve reproducibility. As the change in acetowhite decay level must be calculated from the same tissue point in all images, we present an elastic image registration scheme able to compensate patient, camera and tissue movement robustly in cervical images. The image registration is based on a novel multi-feature entropy similarity criterion. Temporal features are then extracted using the color properties of the aligned image sequence and a dual compartment tissue model of the cervix. An example of the use of the temporal features for pixel-wise classification is presented and the results are compared against ground truth histopathological annotations.
- 650 _2
- $a kyselina octová $x chemie $7 D019342
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a cervix uteri $x patologie $7 D002584
- 650 _2
- $a kolposkopie $x metody $7 D003127
- 650 _2
- $a databáze faktografické $7 D016208
- 650 _2
- $a diagnóza počítačová $x metody $7 D003936
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a počítačové zpracování obrazu $x metody $7 D007091
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a nádory děložního čípku $x diagnóza $7 D002583
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kybic, Jan, $d 1974- $7 xx0028484 $u Center for Machine Perception, Czech Technical University, Department of Cybernetics, Faculty of Electrical Engineering, Prague, Czech Republic
- 700 1_
- $a Li, Wenjing $u STI Medical Systems, 4275 Executive Square #825, La Jolla, California 92037, USA
- 773 0_
- $w MED00001218 $t Computers in biology and medicine $x 1879-0534 $g Roč. 41, č. 10 (2011), s. 960-970
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/21890126 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m $z 0
- 990 __
- $a 20120806 $b ABA008
- 991 __
- $a 20160304131304 $b ABA008
- 999 __
- $a ok $b bmc $g 944104 $s 779488
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2011 $b 41 $c 10 $d 960-970 $e 20110903 $i 1879-0534 $m Computers in biology and medicine $n Comput Biol Med $x MED00001218
- LZP __
- $b NLK111 $a Pubmed-20120806/12/01