• Something wrong with this record ?

Efficient sequential correspondence selection by cosegmentation

J. Cech, J. Matas, M. Perdoch,

. 2010 ; 32 (9) : 1568-81.

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

In many retrieval, object recognition, and wide-baseline stereo methods, correspondences of interest points (distinguished regions) are commonly established by matching compact descriptors such as SIFTs. We show that a subsequent cosegmentation process coupled with a quasi-optimal sequential decision process leads to a correspondence verification procedure that 1) has high precision (is highly discriminative), 2) has good recall, and 3) is fast. The sequential decision on the correctness of a correspondence is based on simple statistics of a modified dense stereo matching algorithm. The statistics are projected on a prominent discriminative direction by SVM. Wald's sequential probability ratio test is performed on the SVM projection computed on progressively larger cosegmented regions. We show experimentally that the proposed sequential correspondence verification (SCV) algorithm significantly outperforms the standard correspondence selection method based on SIFT distance ratios on challenging matching problems.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12026242
003      
CZ-PrNML
005      
20130118105015.0
007      
ta
008      
120817s2010 xxu f 000 0#eng||
009      
AR
024    7_
$a 10.1109/tpami.2009.176 $2 doi
035    __
$a (PubMed)20634553
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Cech, Jan $u Center for Machine Perception, Department ofCybernetics, Faculty of Electrical Engineering, Czech Technical University, Technicka 2, 16627 Praha 6, Czech Republic. cechj@cmp.felk.cvut.cz
245    10
$a Efficient sequential correspondence selection by cosegmentation / $c J. Cech, J. Matas, M. Perdoch,
520    9_
$a In many retrieval, object recognition, and wide-baseline stereo methods, correspondences of interest points (distinguished regions) are commonly established by matching compact descriptors such as SIFTs. We show that a subsequent cosegmentation process coupled with a quasi-optimal sequential decision process leads to a correspondence verification procedure that 1) has high precision (is highly discriminative), 2) has good recall, and 3) is fast. The sequential decision on the correctness of a correspondence is based on simple statistics of a modified dense stereo matching algorithm. The statistics are projected on a prominent discriminative direction by SVM. Wald's sequential probability ratio test is performed on the SVM projection computed on progressively larger cosegmented regions. We show experimentally that the proposed sequential correspondence verification (SCV) algorithm significantly outperforms the standard correspondence selection method based on SIFT distance ratios on challenging matching problems.
650    _2
$a algoritmy $7 D000465
650    _2
$a umělá inteligence $7 D001185
650    _2
$a shluková analýza $7 D016000
650    _2
$a vylepšení obrazu $x metody $7 D007089
650    _2
$a interpretace obrazu počítačem $x metody $7 D007090
650    _2
$a zobrazování trojrozměrné $x metody $7 D021621
650    _2
$a rozpoznávání automatizované $x metody $7 D010363
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a senzitivita a specificita $7 D012680
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Matas, Jirí
700    1_
$a Perdoch, Michal
773    0_
$w MED00180237 $t IEEE transactions on pattern analysis and machine intelligence $x 1939-3539 $g Roč. 32, č. 9 (2010), s. 1568-81
856    41
$u https://pubmed.ncbi.nlm.nih.gov/20634553 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y m
990    __
$a 20120817 $b ABA008
991    __
$a 20130118105129 $b ABA008
999    __
$a ok $b bmc $g 948284 $s 783588
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2010 $b 32 $c 9 $d 1568-81 $i 1939-3539 $m IEEE trans. pattern anal. mach. intell. $n IEEE trans. pattern anal. mach. intell. $x MED00180237
LZP    __
$a Pubmed-20120817/10/04

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...