-
Something wrong with this record ?
Efficient sequential correspondence selection by cosegmentation
J. Cech, J. Matas, M. Perdoch,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Algorithms MeSH
- Image Interpretation, Computer-Assisted methods MeSH
- Reproducibility of Results MeSH
- Pattern Recognition, Automated methods MeSH
- Sensitivity and Specificity MeSH
- Cluster Analysis MeSH
- Artificial Intelligence MeSH
- Image Enhancement methods MeSH
- Imaging, Three-Dimensional methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
In many retrieval, object recognition, and wide-baseline stereo methods, correspondences of interest points (distinguished regions) are commonly established by matching compact descriptors such as SIFTs. We show that a subsequent cosegmentation process coupled with a quasi-optimal sequential decision process leads to a correspondence verification procedure that 1) has high precision (is highly discriminative), 2) has good recall, and 3) is fast. The sequential decision on the correctness of a correspondence is based on simple statistics of a modified dense stereo matching algorithm. The statistics are projected on a prominent discriminative direction by SVM. Wald's sequential probability ratio test is performed on the SVM projection computed on progressively larger cosegmented regions. We show experimentally that the proposed sequential correspondence verification (SCV) algorithm significantly outperforms the standard correspondence selection method based on SIFT distance ratios on challenging matching problems.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12026242
- 003
- CZ-PrNML
- 005
- 20130118105015.0
- 007
- ta
- 008
- 120817s2010 xxu f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1109/tpami.2009.176 $2 doi
- 035 __
- $a (PubMed)20634553
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Cech, Jan $u Center for Machine Perception, Department ofCybernetics, Faculty of Electrical Engineering, Czech Technical University, Technicka 2, 16627 Praha 6, Czech Republic. cechj@cmp.felk.cvut.cz
- 245 10
- $a Efficient sequential correspondence selection by cosegmentation / $c J. Cech, J. Matas, M. Perdoch,
- 520 9_
- $a In many retrieval, object recognition, and wide-baseline stereo methods, correspondences of interest points (distinguished regions) are commonly established by matching compact descriptors such as SIFTs. We show that a subsequent cosegmentation process coupled with a quasi-optimal sequential decision process leads to a correspondence verification procedure that 1) has high precision (is highly discriminative), 2) has good recall, and 3) is fast. The sequential decision on the correctness of a correspondence is based on simple statistics of a modified dense stereo matching algorithm. The statistics are projected on a prominent discriminative direction by SVM. Wald's sequential probability ratio test is performed on the SVM projection computed on progressively larger cosegmented regions. We show experimentally that the proposed sequential correspondence verification (SCV) algorithm significantly outperforms the standard correspondence selection method based on SIFT distance ratios on challenging matching problems.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a umělá inteligence $7 D001185
- 650 _2
- $a shluková analýza $7 D016000
- 650 _2
- $a vylepšení obrazu $x metody $7 D007089
- 650 _2
- $a interpretace obrazu počítačem $x metody $7 D007090
- 650 _2
- $a zobrazování trojrozměrné $x metody $7 D021621
- 650 _2
- $a rozpoznávání automatizované $x metody $7 D010363
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a senzitivita a specificita $7 D012680
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Matas, Jirí
- 700 1_
- $a Perdoch, Michal
- 773 0_
- $w MED00180237 $t IEEE transactions on pattern analysis and machine intelligence $x 1939-3539 $g Roč. 32, č. 9 (2010), s. 1568-81
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/20634553 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m
- 990 __
- $a 20120817 $b ABA008
- 991 __
- $a 20130118105129 $b ABA008
- 999 __
- $a ok $b bmc $g 948284 $s 783588
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2010 $b 32 $c 9 $d 1568-81 $i 1939-3539 $m IEEE trans. pattern anal. mach. intell. $n IEEE trans. pattern anal. mach. intell. $x MED00180237
- LZP __
- $a Pubmed-20120817/10/04