-
Je něco špatně v tomto záznamu ?
Efficient sequential correspondence selection by cosegmentation
J. Cech, J. Matas, M. Perdoch,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20634553
DOI
10.1109/tpami.2009.176
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- interpretace obrazu počítačem metody MeSH
- reprodukovatelnost výsledků MeSH
- rozpoznávání automatizované metody MeSH
- senzitivita a specificita MeSH
- shluková analýza MeSH
- umělá inteligence MeSH
- vylepšení obrazu metody MeSH
- zobrazování trojrozměrné metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In many retrieval, object recognition, and wide-baseline stereo methods, correspondences of interest points (distinguished regions) are commonly established by matching compact descriptors such as SIFTs. We show that a subsequent cosegmentation process coupled with a quasi-optimal sequential decision process leads to a correspondence verification procedure that 1) has high precision (is highly discriminative), 2) has good recall, and 3) is fast. The sequential decision on the correctness of a correspondence is based on simple statistics of a modified dense stereo matching algorithm. The statistics are projected on a prominent discriminative direction by SVM. Wald's sequential probability ratio test is performed on the SVM projection computed on progressively larger cosegmented regions. We show experimentally that the proposed sequential correspondence verification (SCV) algorithm significantly outperforms the standard correspondence selection method based on SIFT distance ratios on challenging matching problems.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12026242
- 003
- CZ-PrNML
- 005
- 20130118105015.0
- 007
- ta
- 008
- 120817s2010 xxu f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1109/tpami.2009.176 $2 doi
- 035 __
- $a (PubMed)20634553
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Cech, Jan $u Center for Machine Perception, Department ofCybernetics, Faculty of Electrical Engineering, Czech Technical University, Technicka 2, 16627 Praha 6, Czech Republic. cechj@cmp.felk.cvut.cz
- 245 10
- $a Efficient sequential correspondence selection by cosegmentation / $c J. Cech, J. Matas, M. Perdoch,
- 520 9_
- $a In many retrieval, object recognition, and wide-baseline stereo methods, correspondences of interest points (distinguished regions) are commonly established by matching compact descriptors such as SIFTs. We show that a subsequent cosegmentation process coupled with a quasi-optimal sequential decision process leads to a correspondence verification procedure that 1) has high precision (is highly discriminative), 2) has good recall, and 3) is fast. The sequential decision on the correctness of a correspondence is based on simple statistics of a modified dense stereo matching algorithm. The statistics are projected on a prominent discriminative direction by SVM. Wald's sequential probability ratio test is performed on the SVM projection computed on progressively larger cosegmented regions. We show experimentally that the proposed sequential correspondence verification (SCV) algorithm significantly outperforms the standard correspondence selection method based on SIFT distance ratios on challenging matching problems.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a umělá inteligence $7 D001185
- 650 _2
- $a shluková analýza $7 D016000
- 650 _2
- $a vylepšení obrazu $x metody $7 D007089
- 650 _2
- $a interpretace obrazu počítačem $x metody $7 D007090
- 650 _2
- $a zobrazování trojrozměrné $x metody $7 D021621
- 650 _2
- $a rozpoznávání automatizované $x metody $7 D010363
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a senzitivita a specificita $7 D012680
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Matas, Jirí
- 700 1_
- $a Perdoch, Michal
- 773 0_
- $w MED00180237 $t IEEE transactions on pattern analysis and machine intelligence $x 1939-3539 $g Roč. 32, č. 9 (2010), s. 1568-81
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/20634553 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m
- 990 __
- $a 20120817 $b ABA008
- 991 __
- $a 20130118105129 $b ABA008
- 999 __
- $a ok $b bmc $g 948284 $s 783588
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2010 $b 32 $c 9 $d 1568-81 $i 1939-3539 $m IEEE trans. pattern anal. mach. intell. $n IEEE trans. pattern anal. mach. intell. $x MED00180237
- LZP __
- $a Pubmed-20120817/10/04