• Je něco špatně v tomto záznamu ?

Functional connectivity in resting-state fMRI: is linear correlation sufficient?

J. Hlinka, M. Palus, M. Vejmelka, D. Mantini, M. Corbetta

. 2011 ; 54 (3) : 2218-2225.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc12027372

Functional connectivity (FC) analysis is a prominent approach to analyzing fMRI data, especially acquired under the resting state condition. The commonly used linear correlation FC measure bears an implicit assumption of Gaussianity of the dependence structure. If only the marginals, but not all the bivariate distributions are Gaussian, linear correlation consistently underestimates the strength of the dependence. To assess the suitability of linear correlation and the general potential of nonlinear FC measures, we present a framework for testing and estimating the deviation from Gaussianity by means of comparing mutual information in the data and its Gaussianized counterpart. We apply this method to 24 sessions of human resting state fMRI. For each session, matrix of connectivities between 90 anatomical parcel time series is computed using mutual information and compared to results from its multivariate Gaussian surrogate that conserves the correlations but cancels any nonlinearity. While the group-level tests confirmed non-Gaussianity in the FC, the quantitative assessment revealed that the portion of mutual information neglected by linear correlation is relatively minor-on average only about 5% of the mutual information already captured by the linear correlation. The marginality of the non-Gaussianity was confirmed in comparisons using clustering of the parcels-the disagreement between clustering obtained from mutual information and linear correlation was attributable to random error. We conclude that for this type of data, practical relevance of nonlinear methods trying to improve over linear correlation might be limited by the fact that the data are indeed almost Gaussian.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc12027372
003      
CZ-PrNML
005      
20160225143814.0
007      
ta
008      
120816s2011 xxu f 000 0#eng||
009      
AR
024    7_
$a 10.1016/j.neuroimage.2010.08.042 $2 doi
035    __
$a (PubMed)20800096
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Hlinka, Jaroslav $u Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, Czech Republic. hlinka@cs.cas.cz
245    10
$a Functional connectivity in resting-state fMRI: is linear correlation sufficient? / $c J. Hlinka, M. Palus, M. Vejmelka, D. Mantini, M. Corbetta
520    9_
$a Functional connectivity (FC) analysis is a prominent approach to analyzing fMRI data, especially acquired under the resting state condition. The commonly used linear correlation FC measure bears an implicit assumption of Gaussianity of the dependence structure. If only the marginals, but not all the bivariate distributions are Gaussian, linear correlation consistently underestimates the strength of the dependence. To assess the suitability of linear correlation and the general potential of nonlinear FC measures, we present a framework for testing and estimating the deviation from Gaussianity by means of comparing mutual information in the data and its Gaussianized counterpart. We apply this method to 24 sessions of human resting state fMRI. For each session, matrix of connectivities between 90 anatomical parcel time series is computed using mutual information and compared to results from its multivariate Gaussian surrogate that conserves the correlations but cancels any nonlinearity. While the group-level tests confirmed non-Gaussianity in the FC, the quantitative assessment revealed that the portion of mutual information neglected by linear correlation is relatively minor-on average only about 5% of the mutual information already captured by the linear correlation. The marginality of the non-Gaussianity was confirmed in comparisons using clustering of the parcels-the disagreement between clustering obtained from mutual information and linear correlation was attributable to random error. We conclude that for this type of data, practical relevance of nonlinear methods trying to improve over linear correlation might be limited by the fact that the data are indeed almost Gaussian.
650    _2
$a dospělí $7 D000328
650    _2
$a algoritmy $7 D000465
650    _2
$a shluková analýza $7 D016000
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a Fourierova analýza $7 D005583
650    _2
$a lidé $7 D006801
650    _2
$a lineární modely $7 D016014
650    _2
$a magnetická rezonanční tomografie $7 D008279
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a nervové dráhy $x fyziologie $7 D009434
650    _2
$a normální rozdělení $7 D016011
650    _2
$a kyslík $x krev $7 D010100
650    _2
$a odpočinek $x fyziologie $7 D012146
650    _2
$a software $7 D012984
650    _2
$a mladý dospělý $7 D055815
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Paluš, Milan, $d 1963- $7 xx0089955 $u Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodarenskou vezi 2, 18207 Prague, Czech Republic
700    1_
$a Vejmelka, Martin $u Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodarenskou vezi 2, 18207 Prague, Czech Republic
700    1_
$a Mantini, Dante $u Laboratory for Neuro- and Psychophysiology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Institute for Advanced Biomedical Technologies, G. D'Annunzio University Foundation, G. D'Annunzio University, 66013 Chieti, Italy
700    1_
$a Corbetta, Maurizio $u Department of Radiology, Washington University, St. Louis, MO, USA; Department of Neurology, Washington University, St. Louis, MO, USA
773    0_
$w MED00006575 $t Neuroimage $x 1095-9572 $g Roč. 54, č. 3 (2011), s. 2218-2225
856    41
$u https://pubmed.ncbi.nlm.nih.gov/20800096 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y m $z 0
990    __
$a 20120816 $b ABA008
991    __
$a 20160225143531 $b ABA008
999    __
$a ok $b bmc $g 949414 $s 784718
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2011 $b 54 $c 3 $d 2218-2225 $i 1095-9572 $m Neuroimage $n Neuroimage $x MED00006575
LZP    __
$b NLK112 $a Pubmed-20120816/11/02

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace