-
Je něco špatně v tomto záznamu ?
Functional connectivity in resting-state fMRI: is linear correlation sufficient?
J. Hlinka, M. Palus, M. Vejmelka, D. Mantini, M. Corbetta
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
ProQuest Central
od 1998-05-01 do Před 2 měsíci
Health & Medicine (ProQuest)
od 2002-08-01 do Před 2 měsíci
Psychology Database (ProQuest)
od 2002-08-01 do Před 2 měsíci
ROAD: Directory of Open Access Scholarly Resources
- MeSH
- algoritmy MeSH
- dospělí MeSH
- Fourierova analýza MeSH
- kyslík krev MeSH
- lidé MeSH
- lineární modely MeSH
- magnetická rezonanční tomografie MeSH
- mladý dospělý MeSH
- nervové dráhy fyziologie MeSH
- normální rozdělení MeSH
- odpočinek fyziologie MeSH
- shluková analýza MeSH
- software MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Functional connectivity (FC) analysis is a prominent approach to analyzing fMRI data, especially acquired under the resting state condition. The commonly used linear correlation FC measure bears an implicit assumption of Gaussianity of the dependence structure. If only the marginals, but not all the bivariate distributions are Gaussian, linear correlation consistently underestimates the strength of the dependence. To assess the suitability of linear correlation and the general potential of nonlinear FC measures, we present a framework for testing and estimating the deviation from Gaussianity by means of comparing mutual information in the data and its Gaussianized counterpart. We apply this method to 24 sessions of human resting state fMRI. For each session, matrix of connectivities between 90 anatomical parcel time series is computed using mutual information and compared to results from its multivariate Gaussian surrogate that conserves the correlations but cancels any nonlinearity. While the group-level tests confirmed non-Gaussianity in the FC, the quantitative assessment revealed that the portion of mutual information neglected by linear correlation is relatively minor-on average only about 5% of the mutual information already captured by the linear correlation. The marginality of the non-Gaussianity was confirmed in comparisons using clustering of the parcels-the disagreement between clustering obtained from mutual information and linear correlation was attributable to random error. We conclude that for this type of data, practical relevance of nonlinear methods trying to improve over linear correlation might be limited by the fact that the data are indeed almost Gaussian.
Department of Neurology Washington University St Louis MO USA
Department of Radiology Washington University St Louis MO USA
Institute of Computer Science Academy of Sciences of the Czech Republic Prague Czech Republic
Laboratory for Neuro and Psychophysiology Katholieke Universiteit Leuven 3000 Leuven Belgium
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc12027372
- 003
- CZ-PrNML
- 005
- 20160225143814.0
- 007
- ta
- 008
- 120816s2011 xxu f 000 0#eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.neuroimage.2010.08.042 $2 doi
- 035 __
- $a (PubMed)20800096
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Hlinka, Jaroslav $u Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, Czech Republic. hlinka@cs.cas.cz
- 245 10
- $a Functional connectivity in resting-state fMRI: is linear correlation sufficient? / $c J. Hlinka, M. Palus, M. Vejmelka, D. Mantini, M. Corbetta
- 520 9_
- $a Functional connectivity (FC) analysis is a prominent approach to analyzing fMRI data, especially acquired under the resting state condition. The commonly used linear correlation FC measure bears an implicit assumption of Gaussianity of the dependence structure. If only the marginals, but not all the bivariate distributions are Gaussian, linear correlation consistently underestimates the strength of the dependence. To assess the suitability of linear correlation and the general potential of nonlinear FC measures, we present a framework for testing and estimating the deviation from Gaussianity by means of comparing mutual information in the data and its Gaussianized counterpart. We apply this method to 24 sessions of human resting state fMRI. For each session, matrix of connectivities between 90 anatomical parcel time series is computed using mutual information and compared to results from its multivariate Gaussian surrogate that conserves the correlations but cancels any nonlinearity. While the group-level tests confirmed non-Gaussianity in the FC, the quantitative assessment revealed that the portion of mutual information neglected by linear correlation is relatively minor-on average only about 5% of the mutual information already captured by the linear correlation. The marginality of the non-Gaussianity was confirmed in comparisons using clustering of the parcels-the disagreement between clustering obtained from mutual information and linear correlation was attributable to random error. We conclude that for this type of data, practical relevance of nonlinear methods trying to improve over linear correlation might be limited by the fact that the data are indeed almost Gaussian.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a shluková analýza $7 D016000
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a Fourierova analýza $7 D005583
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a lineární modely $7 D016014
- 650 _2
- $a magnetická rezonanční tomografie $7 D008279
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a nervové dráhy $x fyziologie $7 D009434
- 650 _2
- $a normální rozdělení $7 D016011
- 650 _2
- $a kyslík $x krev $7 D010100
- 650 _2
- $a odpočinek $x fyziologie $7 D012146
- 650 _2
- $a software $7 D012984
- 650 _2
- $a mladý dospělý $7 D055815
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Paluš, Milan, $d 1963- $7 xx0089955 $u Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodarenskou vezi 2, 18207 Prague, Czech Republic
- 700 1_
- $a Vejmelka, Martin $u Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod vodarenskou vezi 2, 18207 Prague, Czech Republic
- 700 1_
- $a Mantini, Dante $u Laboratory for Neuro- and Psychophysiology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Institute for Advanced Biomedical Technologies, G. D'Annunzio University Foundation, G. D'Annunzio University, 66013 Chieti, Italy
- 700 1_
- $a Corbetta, Maurizio $u Department of Radiology, Washington University, St. Louis, MO, USA; Department of Neurology, Washington University, St. Louis, MO, USA
- 773 0_
- $w MED00006575 $t Neuroimage $x 1095-9572 $g Roč. 54, č. 3 (2011), s. 2218-2225
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/20800096 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y m $z 0
- 990 __
- $a 20120816 $b ABA008
- 991 __
- $a 20160225143531 $b ABA008
- 999 __
- $a ok $b bmc $g 949414 $s 784718
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2011 $b 54 $c 3 $d 2218-2225 $i 1095-9572 $m Neuroimage $n Neuroimage $x MED00006575
- LZP __
- $b NLK112 $a Pubmed-20120816/11/02