-
Je něco špatně v tomto záznamu ?
Molecular mechanism of genotoxicity of the environmental pollutant 3-nitrobenzanthrone
M. Stiborová, VM. Arlt, CJ. Henderson, CR. Wolf, E. Frei, HH. Schmeiser, DH. Phillips
Jazyk angličtina Země Česko
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
NLK
Directory of Open Access Journals
od 2001
Free Medical Journals
od 1998
ROAD: Directory of Open Access Scholarly Resources
od 2001
PubMed
16601755
DOI
10.5507/bp.2005.025
Knihovny.cz E-zdroje
- MeSH
- adukty DNA MeSH
- aktivace enzymů MeSH
- benz(a)anthraceny toxicita MeSH
- jaterní mikrozomy metabolismus MeSH
- karcinogeny životního prostředí toxicita MeSH
- látky znečišťující životní prostředí toxicita MeSH
- lidé MeSH
- peroxidasy metabolismus MeSH
- systém (enzymů) cytochromů P-450 metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
3-Nitrobenzanthrone (3-NBA) is a suspected human carcinogen identified in diesel exhaust and air pollution. This article reviews the results of our laboratories showing which of the phase I and II enzymes are responsible for 3-NBA genotoxicity, participating in activation of 3-NBA and its human metabolite, 3-aminobenzanthrone (3-ABA), to species generating DNA adducts. Among the phase I enzymes, the most of the activation of 3-NBA in vitro is attributable to cytosolic NAD(P)H:quinone oxidoreductase (NQO1), while N,O-acetyltransferase (NAT), NAT2, followed by NAT1, sulfotransferase (SULT), SULT1A1 and, to a lesser extent, SULT1A2 are the major phase II enzymes activating 3- NBA. To evaluate the importance of hepatic cytosolic enzymes in relation to microsomal NADPH:cytochrome P450 (CYP) oxidoreductase (POR) in the activation of 3-NBA in vivo, we treated hepatic POR-null and wild-type C57BL/6 mice with 3-NBA or 3-ABA. The results indicate that 3-NBA is predominantly activated by cytosolic nitroreductases such as NQO1 rather than microsomal POR. In the case of 3-ABA, CYP1A1/2 enzymes are essential for the oxidative activation of 3-ABA in liver. However, cells in the extrahepatic organs have the metabolic capacity to activate 3-ABA to form DNA adducts, independently from CYP-mediated oxidation in the liver. Peroxidases such as prostaglandin H synthase, lactoperoxidase, myeloperoxidase, abundant in several extrahepatic tissues, generate DNA adducts, which are formed in vivo by 3-ABA or 3-NBA. The results suggest that both CYPs and peroxidases may play an important role in metabolism of 3-ABA to reactive species forming DNA adducts, participating in genotoxicity of this compound and its parental counterpart, 3-NBA.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc13003773
- 003
- CZ-PrNML
- 005
- 20130228110527.0
- 007
- ta
- 008
- 130128s2005 xr d f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.5507/bp.2005.025 $2 doi
- 035 __
- $a (PubMed)16601755
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xr
- 100 1_
- $a Stiborová, Marie, $d 1950-2020 $7 jo2005259907 $u Department of Biochemistry, Charles University, Prague 2
- 245 10
- $a Molecular mechanism of genotoxicity of the environmental pollutant 3-nitrobenzanthrone / $c M. Stiborová, VM. Arlt, CJ. Henderson, CR. Wolf, E. Frei, HH. Schmeiser, DH. Phillips
- 520 9_
- $a 3-Nitrobenzanthrone (3-NBA) is a suspected human carcinogen identified in diesel exhaust and air pollution. This article reviews the results of our laboratories showing which of the phase I and II enzymes are responsible for 3-NBA genotoxicity, participating in activation of 3-NBA and its human metabolite, 3-aminobenzanthrone (3-ABA), to species generating DNA adducts. Among the phase I enzymes, the most of the activation of 3-NBA in vitro is attributable to cytosolic NAD(P)H:quinone oxidoreductase (NQO1), while N,O-acetyltransferase (NAT), NAT2, followed by NAT1, sulfotransferase (SULT), SULT1A1 and, to a lesser extent, SULT1A2 are the major phase II enzymes activating 3- NBA. To evaluate the importance of hepatic cytosolic enzymes in relation to microsomal NADPH:cytochrome P450 (CYP) oxidoreductase (POR) in the activation of 3-NBA in vivo, we treated hepatic POR-null and wild-type C57BL/6 mice with 3-NBA or 3-ABA. The results indicate that 3-NBA is predominantly activated by cytosolic nitroreductases such as NQO1 rather than microsomal POR. In the case of 3-ABA, CYP1A1/2 enzymes are essential for the oxidative activation of 3-ABA in liver. However, cells in the extrahepatic organs have the metabolic capacity to activate 3-ABA to form DNA adducts, independently from CYP-mediated oxidation in the liver. Peroxidases such as prostaglandin H synthase, lactoperoxidase, myeloperoxidase, abundant in several extrahepatic tissues, generate DNA adducts, which are formed in vivo by 3-ABA or 3-NBA. The results suggest that both CYPs and peroxidases may play an important role in metabolism of 3-ABA to reactive species forming DNA adducts, participating in genotoxicity of this compound and its parental counterpart, 3-NBA.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a benz(a)anthraceny $x toxicita $7 D001551
- 650 _2
- $a karcinogeny životního prostředí $x toxicita $7 D002274
- 650 _2
- $a systém (enzymů) cytochromů P-450 $x metabolismus $7 D003577
- 650 _2
- $a adukty DNA $7 D018736
- 650 _2
- $a látky znečišťující životní prostředí $x toxicita $7 D004785
- 650 _2
- $a aktivace enzymů $7 D004789
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a jaterní mikrozomy $x metabolismus $7 D008862
- 650 _2
- $a peroxidasy $x metabolismus $7 D010544
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Arlt, Volker M. $u Section of Molecular Carcinogenesis, Institute of Cancer Research, Brookes Lawley Building, Sutton, Surrey SM2 5NG, United Kingdom $7 xx0074763
- 700 1_
- $a Henderson, Colin J. $u Cancer Research UK Molecular Pharmacology Unit, Biomedical Research Centre, Dundee DD1 9SY, United Kingdom
- 700 1_
- $a Wolf, C. Roland $u Cancer Research UK Molecular Pharmacology Unit, Biomedical Research Centre, Dundee DD1 9SY, United Kingdom
- 700 1#
- $a Frei, Eva. $7 _AN036392 $u Division of Molecular Toxicology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- 700 1_
- $a Schmeiser, Heinz H. $u Division of Molecular Toxicology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- 700 1_
- $a Phillips, David H. $u Section of Molecular Carcinogenesis, Institute of Cancer Research, Brookes Lawley Building, Sutton, Surrey SM2 5NG, United Kingdom
- 773 0_
- $w MED00012606 $t Biomedical papers of the Medical Faculty of the University Palacký, Olomouc, Czech Republic $x 1213-8118 $g Roč. 149, č. 2 (2005), s. 191-197
- 910 __
- $a ABA008 $b A 1502 $c sign $y 3 $z 0
- 990 __
- $a 20130128 $b ABA008
- 991 __
- $a 20130228110728 $b ABA008
- 999 __
- $a ok $b bmc $g 966427 $s 801968
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2005 $b 149 $c 2 $d 191-197 $i 1213-8118 $m Biomedical papers of the Medical Faculty of the University Palacký, Olomouc Czech Republic $n Biomed. Pap. Fac. Med. Palacký Univ. Olomouc Czech Repub. (Print) $x MED00012606
- LZP __
- $b NLK111 $a Pubmed-20130128