• Something wrong with this record ?

Novel and neglected issues of acetone-butanol-ethanol (ABE) fermentation by clostridia: Clostridium metabolic diversity, tools for process mapping and continuous fermentation systems

P. Patakova, M. Linhova, M. Rychtera, L. Paulova, K. Melzoch,

. 2012 ; 31 (1) : 58-67.

Language English Country England, Great Britain

Document type Journal Article, Research Support, Non-U.S. Gov't, Review

This review emphasises the fact that studies of acetone-butanol-ethanol (ABE) fermentation by solventogenic clostridia cannot be limited to research on the strain Clostridium acetobutylicum ATCC 824. Various 1-butanol producing species of the genus Clostridium, which differ in their patterns of product formation and abilities to ferment particular carbohydrates or glycerol, are described. Special attention is devoted to species and strains that do not produce acetone naturally and to the utilisation of lactose, inulin, glycerol and mixtures of pentose and hexose carbohydrates. Furthermore, process-mapping tools based on different principles, including flow cytometry, DNA microarray analysis, mass spectrometry, Raman microscopy, FT-IR spectroscopy and anisotropy of electrical polarisability, which might facilitate fermentation control and a deeper understanding of ABE fermentation, are introduced. At present, the methods with the greatest potential are flow cytometry and transcriptome analysis. Flow cytometry can be used to visualise and capture cells within clostridial populations as they progress through the normal cell cycle, in which symmetric and asymmetric cell division phases alternate. Cell viability of a population of Clostridium pasteurianum NRRL B-598 was determined by flow cytometry. Transcriptome analysis has been used in various studies including the detection of genes expressed in solventogenic phase, at sporulation, in the stress response, to compare expression patterns of different strains or parent and mutant strains, for studies of catabolite repression, and for the detection of genes involved in the transport and metabolism of 11 different carbohydrates. Interestingly, the results of transcriptome analysis also challenge our earlier understanding of the role of the Spo0A regulator in initiation of solventogenesis in C. acetobutylicum ATCC 824. Lastly, the review describes other significant recent discoveries, including the deleterious effects of intracellular formic acid accumulation in C. acetobutylicum DSM 1731 cells on the metabolic switch from acidogenesis to solventogenesis and the development of a high-cell density continuous system using Clostridium saccharoperbutylacetonicum N1-4, in which 1-butanol productivity of 7.99 g/L/h was reached.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc13031939
003      
CZ-PrNML
005      
20131002114426.0
007      
ta
008      
131002s2012 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.biotechadv.2012.01.010 $2 doi
035    __
$a (PubMed)22306328
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Patakova, Petra $u Department of Fermentation Chemistry and Bioengineering, Institute of Chemical Technology Prague, Technicka 5, CZ16628 Prague 6, Czech Republic. petra.patakova@vscht.cz
245    10
$a Novel and neglected issues of acetone-butanol-ethanol (ABE) fermentation by clostridia: Clostridium metabolic diversity, tools for process mapping and continuous fermentation systems / $c P. Patakova, M. Linhova, M. Rychtera, L. Paulova, K. Melzoch,
520    9_
$a This review emphasises the fact that studies of acetone-butanol-ethanol (ABE) fermentation by solventogenic clostridia cannot be limited to research on the strain Clostridium acetobutylicum ATCC 824. Various 1-butanol producing species of the genus Clostridium, which differ in their patterns of product formation and abilities to ferment particular carbohydrates or glycerol, are described. Special attention is devoted to species and strains that do not produce acetone naturally and to the utilisation of lactose, inulin, glycerol and mixtures of pentose and hexose carbohydrates. Furthermore, process-mapping tools based on different principles, including flow cytometry, DNA microarray analysis, mass spectrometry, Raman microscopy, FT-IR spectroscopy and anisotropy of electrical polarisability, which might facilitate fermentation control and a deeper understanding of ABE fermentation, are introduced. At present, the methods with the greatest potential are flow cytometry and transcriptome analysis. Flow cytometry can be used to visualise and capture cells within clostridial populations as they progress through the normal cell cycle, in which symmetric and asymmetric cell division phases alternate. Cell viability of a population of Clostridium pasteurianum NRRL B-598 was determined by flow cytometry. Transcriptome analysis has been used in various studies including the detection of genes expressed in solventogenic phase, at sporulation, in the stress response, to compare expression patterns of different strains or parent and mutant strains, for studies of catabolite repression, and for the detection of genes involved in the transport and metabolism of 11 different carbohydrates. Interestingly, the results of transcriptome analysis also challenge our earlier understanding of the role of the Spo0A regulator in initiation of solventogenesis in C. acetobutylicum ATCC 824. Lastly, the review describes other significant recent discoveries, including the deleterious effects of intracellular formic acid accumulation in C. acetobutylicum DSM 1731 cells on the metabolic switch from acidogenesis to solventogenesis and the development of a high-cell density continuous system using Clostridium saccharoperbutylacetonicum N1-4, in which 1-butanol productivity of 7.99 g/L/h was reached.
650    _2
$a aceton $x metabolismus $7 D000096
650    _2
$a butanoly $x metabolismus $7 D000440
650    _2
$a Clostridium $x cytologie $x genetika $x metabolismus $7 D003013
650    _2
$a ethanol $x metabolismus $7 D000431
650    12
$a fermentace $7 D005285
650    _2
$a průtoková cytometrie $7 D005434
650    _2
$a glycerol $x metabolismus $7 D005990
650    _2
$a hexosy $x metabolismus $7 D006601
650    _2
$a inulin $x metabolismus $7 D007444
650    _2
$a laktosa $x metabolismus $7 D007785
650    _2
$a sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů $7 D020411
650    _2
$a pentosy $x metabolismus $7 D010429
650    _2
$a spektroskopie infračervená s Fourierovou transformací $7 D017550
650    _2
$a Ramanova spektroskopie $7 D013059
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a přehledy $7 D016454
700    1_
$a Linhova, Michaela $u -
700    1_
$a Rychtera, Mojmir $u -
700    1_
$a Paulova, Leona $u -
700    1_
$a Melzoch, Karel $u -
773    0_
$w MED00000793 $t Biotechnology advances $x 1873-1899 $g Roč. 31, č. 1 (2012), s. 58-67
856    41
$u https://pubmed.ncbi.nlm.nih.gov/22306328 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20131002 $b ABA008
991    __
$a 20131002114943 $b ABA008
999    __
$a ok $b bmc $g 996026 $s 830384
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2012 $b 31 $c 1 $d 58-67 $i 1873-1899 $m Biotechnology advances $n Biotechnol Adv $x MED00000793
LZP    __
$a Pubmed-20131002

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...