Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Computer aided segmentation and classification of mass in mammographic images using ANFIS [Computerunterstützte Segmentierung und Klassifizierung der Messe in Mammografiebildern mit Adaptive NeuroFuzzyInferenzmaschine-System] [Segmentation assisté par ordinateur et classification de la messe en images mammographiques en utilisant Adaptive Neuro système d'inférence]

K. Yuvaraj, U.S. Ragupathy

. 2013 ; 9 (2) : 37-41.

Jazyk angličtina Země Česko Médium elektronický zdroj

Perzistentní odkaz   https://www.medvik.cz/link/bmc14040319

Background: Breast cancer is one of the leading cancers in woman worldwide both in developed and developing nations as per the records from World Health Organization. Many studies have shown that mammography is very effective tool for the breast cancer diagnosis. Mass segmentation plays an important step for the cancer detection. Objective: The objective of the proposed method is to segment the mass and to classify the mass with high accuracy. Methods: The segmentation includes two main steps. First, a rough initial segmentation through iterative thresholding, and second, an active contour based segmentation. The relevant statistical features are extracted and the classification is done by using Adaptive Neuro Fuzzy Inference System (ANFIS). Results: The proposed mass detection scheme achieves sensitivity of 87.5% and specificity of 100% for a set of twenty two images. The overall segmentation accuracy obtained is 91.30%. Conclusions: This work appears to be of high clinical significance since the mass detection plays an important role in diagnosis of breast cancer.

Computerunterstützte Segmentierung und Klassifizierung der Messe in Mammografiebildern mit Adaptive NeuroFuzzyInferenzmaschine-System

Segmentation assisté par ordinateur et classification de la messe en images mammographiques en utilisant Adaptive Neuro système d'inférence

Computer aided segmentation and classification of mass in mammographic images using ANFIS [elektronický zdroj] /

Citace poskytuje Crossref.org

Bibliografie atd.

Literatura

000      
00000naa a2200000 a 4500
001      
bmc14040319
003      
CZ-PrNML
005      
20161031130542.0
007      
cr|cn|
008      
140106s2013 xr da fs 000 0eng||
009      
eAR
024    7_
$a 10.24105/ejbi.2013.09.2.6 $2 doi
040    __
$a ABA008 $d ABA008 $e AACR2 $b cze
041    0_
$a eng $b ger $b fre
044    __
$a xr
100    1_
$a Yuvaraj, K. $u Department of Electronics and Instrumentation Engineering, Kongu Engineering College, Perundurai, Erode, Tamil Nadu, India
245    10
$a Computer aided segmentation and classification of mass in mammographic images using ANFIS $h [elektronický zdroj] / $c K. Yuvaraj, U.S. Ragupathy
246    31
$a Computerunterstützte Segmentierung und Klassifizierung der Messe in Mammografiebildern mit Adaptive NeuroFuzzyInferenzmaschine-System
246    31
$a Segmentation assisté par ordinateur et classification de la messe en images mammographiques en utilisant Adaptive Neuro système d'inférence
504    __
$a Literatura
520    9_
$a Background: Breast cancer is one of the leading cancers in woman worldwide both in developed and developing nations as per the records from World Health Organization. Many studies have shown that mammography is very effective tool for the breast cancer diagnosis. Mass segmentation plays an important step for the cancer detection. Objective: The objective of the proposed method is to segment the mass and to classify the mass with high accuracy. Methods: The segmentation includes two main steps. First, a rough initial segmentation through iterative thresholding, and second, an active contour based segmentation. The relevant statistical features are extracted and the classification is done by using Adaptive Neuro Fuzzy Inference System (ANFIS). Results: The proposed mass detection scheme achieves sensitivity of 87.5% and specificity of 100% for a set of twenty two images. The overall segmentation accuracy obtained is 91.30%. Conclusions: This work appears to be of high clinical significance since the mass detection plays an important role in diagnosis of breast cancer.
650    _2
$a lidé $7 D006801
650    12
$a ženské pohlaví $7 D005260
650    _2
$a dospělí $7 D000328
650    12
$a nádory prsu $x diagnóza $x klasifikace $7 D001943
650    12
$a mamografie $x metody $x přístrojové vybavení $x statistika a číselné údaje $7 D008327
650    _2
$a počítače $7 D003201
650    12
$a senzitivita a specificita $7 D012680
650    _2
$a statistika jako téma $7 D013223
700    1_
$a Ragupathy, U. S. $u Department of Electronics and Instrumentation Engineering, Kongu Engineering College, Perundurai, Erode, Tamil Nadu, India
773    0_
$t European journal for biomedical informatics $x 1801-5603 $g Roč. 9, č. 2 (2013), s. 37-41 $w MED00173462
856    41
$u http://www.ejbi.org/img/ejbi/2013/2/Yuvaraj_en.pdf $y plný text volně přístupný
910    __
$a ABA008 $z 0 $y 4
990    __
$a 20140105160254 $b ABA008
991    __
$a 20161031130506 $b ABA008
999    __
$a ok $b bmc $g 1004726 $s 838824
BAS    __
$a 3 $a 4
BMC    __
$a 2013 $b 9 $c 2 $d 37-41 $i 1801-5603 $m European Journal for Biomedical Informatics $n Eur. J. Biomed. Inform. (Praha) $x MED00173462
LZP    __
$c NLK185 $d 20140206 $a NLK 2014-03/vt

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...