-
Je něco špatně v tomto záznamu ?
Computer aided segmentation and classification of mass in mammographic images using ANFIS [Computerunterstützte Segmentierung und Klassifizierung der Messe in Mammografiebildern mit Adaptive NeuroFuzzyInferenzmaschine-System] [Segmentation assisté par ordinateur et classification de la messe en images mammographiques en utilisant Adaptive Neuro système d'inférence]
K. Yuvaraj, U.S. Ragupathy
Jazyk angličtina Země Česko Médium elektronický zdroj
- MeSH
- dospělí MeSH
- lidé MeSH
- mamografie * metody přístrojové vybavení statistika a číselné údaje MeSH
- nádory prsu * diagnóza klasifikace MeSH
- počítače MeSH
- senzitivita a specificita * MeSH
- statistika jako téma MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- ženské pohlaví * MeSH
Background: Breast cancer is one of the leading cancers in woman worldwide both in developed and developing nations as per the records from World Health Organization. Many studies have shown that mammography is very effective tool for the breast cancer diagnosis. Mass segmentation plays an important step for the cancer detection. Objective: The objective of the proposed method is to segment the mass and to classify the mass with high accuracy. Methods: The segmentation includes two main steps. First, a rough initial segmentation through iterative thresholding, and second, an active contour based segmentation. The relevant statistical features are extracted and the classification is done by using Adaptive Neuro Fuzzy Inference System (ANFIS). Results: The proposed mass detection scheme achieves sensitivity of 87.5% and specificity of 100% for a set of twenty two images. The overall segmentation accuracy obtained is 91.30%. Conclusions: This work appears to be of high clinical significance since the mass detection plays an important role in diagnosis of breast cancer.
Computerunterstützte Segmentierung und Klassifizierung der Messe in Mammografiebildern mit Adaptive NeuroFuzzyInferenzmaschine-System
Segmentation assisté par ordinateur et classification de la messe en images mammographiques en utilisant Adaptive Neuro système d'inférence
Computer aided segmentation and classification of mass in mammographic images using ANFIS [elektronický zdroj] /
Citace poskytuje Crossref.org
Literatura
- 000
- 00000naa a2200000 a 4500
- 001
- bmc14040319
- 003
- CZ-PrNML
- 005
- 20161031130542.0
- 007
- cr|cn|
- 008
- 140106s2013 xr da fs 000 0eng||
- 009
- eAR
- 024 7_
- $a 10.24105/ejbi.2013.09.2.6 $2 doi
- 040 __
- $a ABA008 $d ABA008 $e AACR2 $b cze
- 041 0_
- $a eng $b ger $b fre
- 044 __
- $a xr
- 100 1_
- $a Yuvaraj, K. $u Department of Electronics and Instrumentation Engineering, Kongu Engineering College, Perundurai, Erode, Tamil Nadu, India
- 245 10
- $a Computer aided segmentation and classification of mass in mammographic images using ANFIS $h [elektronický zdroj] / $c K. Yuvaraj, U.S. Ragupathy
- 246 31
- $a Computerunterstützte Segmentierung und Klassifizierung der Messe in Mammografiebildern mit Adaptive NeuroFuzzyInferenzmaschine-System
- 246 31
- $a Segmentation assisté par ordinateur et classification de la messe en images mammographiques en utilisant Adaptive Neuro système d'inférence
- 504 __
- $a Literatura
- 520 9_
- $a Background: Breast cancer is one of the leading cancers in woman worldwide both in developed and developing nations as per the records from World Health Organization. Many studies have shown that mammography is very effective tool for the breast cancer diagnosis. Mass segmentation plays an important step for the cancer detection. Objective: The objective of the proposed method is to segment the mass and to classify the mass with high accuracy. Methods: The segmentation includes two main steps. First, a rough initial segmentation through iterative thresholding, and second, an active contour based segmentation. The relevant statistical features are extracted and the classification is done by using Adaptive Neuro Fuzzy Inference System (ANFIS). Results: The proposed mass detection scheme achieves sensitivity of 87.5% and specificity of 100% for a set of twenty two images. The overall segmentation accuracy obtained is 91.30%. Conclusions: This work appears to be of high clinical significance since the mass detection plays an important role in diagnosis of breast cancer.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a ženské pohlaví $7 D005260
- 650 _2
- $a dospělí $7 D000328
- 650 12
- $a nádory prsu $x diagnóza $x klasifikace $7 D001943
- 650 12
- $a mamografie $x metody $x přístrojové vybavení $x statistika a číselné údaje $7 D008327
- 650 _2
- $a počítače $7 D003201
- 650 12
- $a senzitivita a specificita $7 D012680
- 650 _2
- $a statistika jako téma $7 D013223
- 700 1_
- $a Ragupathy, U. S. $u Department of Electronics and Instrumentation Engineering, Kongu Engineering College, Perundurai, Erode, Tamil Nadu, India
- 773 0_
- $t European journal for biomedical informatics $x 1801-5603 $g Roč. 9, č. 2 (2013), s. 37-41 $w MED00173462
- 856 41
- $u http://www.ejbi.org/img/ejbi/2013/2/Yuvaraj_en.pdf $y plný text volně přístupný
- 910 __
- $a ABA008 $z 0 $y 4
- 990 __
- $a 20140105160254 $b ABA008
- 991 __
- $a 20161031130506 $b ABA008
- 999 __
- $a ok $b bmc $g 1004726 $s 838824
- BAS __
- $a 3 $a 4
- BMC __
- $a 2013 $b 9 $c 2 $d 37-41 $i 1801-5603 $m European Journal for Biomedical Informatics $n Eur. J. Biomed. Inform. (Praha) $x MED00173462
- LZP __
- $c NLK185 $d 20140206 $a NLK 2014-03/vt