• Something wrong with this record ?

Adaptive wavelet Wiener filtering of ECG signals

L. Smital, M. Vítek, J. Kozumplík, I. Provazník,

. 2013 ; 60 (2) : 437-45.

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

In this study, we focused on the reduction of broadband myopotentials (EMG) in ECG signals using the wavelet Wiener filtering with noise-free signal estimation. We used the dyadic stationary wavelet transform (SWT) in the Wiener filter as well as in estimating the noise-free signal. Our goal was to find a suitable filter bank and to choose other parameters of the Wiener filter with respect to the signal-to-noise ratio (SNR) obtained. Testing was performed on artificially noised signals from the standard CSE database sampled at 500 Hz. When creating an artificial interference, we started from the generated white Gaussian noise, whose power spectrum was modified according to a model of the power spectrum of an EMG signal. To improve the filtering performance, we used adaptive setting parameters of filtering according to the level of interference in the input signal. We were able to increase the average SNR of the whole test database by about 10.6 dB. The proposed algorithm provides better results than the classic wavelet Wiener filter.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc14040972
003      
CZ-PrNML
005      
20140113121100.0
007      
ta
008      
140107s2013 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1109/TBME.2012.2228482 $2 doi
035    __
$a (PubMed)23192472
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Smital, Lukáš
245    10
$a Adaptive wavelet Wiener filtering of ECG signals / $c L. Smital, M. Vítek, J. Kozumplík, I. Provazník,
520    9_
$a In this study, we focused on the reduction of broadband myopotentials (EMG) in ECG signals using the wavelet Wiener filtering with noise-free signal estimation. We used the dyadic stationary wavelet transform (SWT) in the Wiener filter as well as in estimating the noise-free signal. Our goal was to find a suitable filter bank and to choose other parameters of the Wiener filter with respect to the signal-to-noise ratio (SNR) obtained. Testing was performed on artificially noised signals from the standard CSE database sampled at 500 Hz. When creating an artificial interference, we started from the generated white Gaussian noise, whose power spectrum was modified according to a model of the power spectrum of an EMG signal. To improve the filtering performance, we used adaptive setting parameters of filtering according to the level of interference in the input signal. We were able to increase the average SNR of the whole test database by about 10.6 dB. The proposed algorithm provides better results than the classic wavelet Wiener filter.
650    12
$a algoritmy $7 D000465
650    _2
$a databáze faktografické $7 D016208
650    _2
$a elektrokardiografie $x metody $7 D004562
650    _2
$a lidé $7 D006801
650    _2
$a poměr signál - šum $7 D059629
650    12
$a vlnková analýza $7 D058067
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Vítek, Martin $u -
700    1_
$a Kozumplík, Jiří $u -
700    1_
$a Provazník, Ivo $u -
773    0_
$w MED00002172 $t IEEE transactions on bio-medical engineering $x 1558-2531 $g Roč. 60, č. 2 (2013), s. 437-45
856    41
$u https://pubmed.ncbi.nlm.nih.gov/23192472 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20140107 $b ABA008
991    __
$a 20140113121804 $b ABA008
999    __
$a ok $b bmc $g 1005368 $s 839484
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2013 $b 60 $c 2 $d 437-45 $i 1558-2531 $m IEEE transactions on biomedical engineering $n IEEE Trans Biomed Eng $x MED00002172
LZP    __
$a Pubmed-20140107

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...