Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations

J. Bendl, J. Stourac, O. Salanda, A. Pavelka, ED. Wieben, J. Zendulka, J. Brezovsky, J. Damborsky,

. 2014 ; 10 (1) : e1003440.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc15008380

Single nucleotide variants represent a prevalent form of genetic variation. Mutations in the coding regions are frequently associated with the development of various genetic diseases. Computational tools for the prediction of the effects of mutations on protein function are very important for analysis of single nucleotide variants and their prioritization for experimental characterization. Many computational tools are already widely employed for this purpose. Unfortunately, their comparison and further improvement is hindered by large overlaps between the training datasets and benchmark datasets, which lead to biased and overly optimistic reported performances. In this study, we have constructed three independent datasets by removing all duplicities, inconsistencies and mutations previously used in the training of evaluated tools. The benchmark dataset containing over 43,000 mutations was employed for the unbiased evaluation of eight established prediction tools: MAPP, nsSNPAnalyzer, PANTHER, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT and SNAP. The six best performing tools were combined into a consensus classifier PredictSNP, resulting into significantly improved prediction performance, and at the same time returned results for all mutations, confirming that consensus prediction represents an accurate and robust alternative to the predictions delivered by individual tools. A user-friendly web interface enables easy access to all eight prediction tools, the consensus classifier PredictSNP and annotations from the Protein Mutant Database and the UniProt database. The web server and the datasets are freely available to the academic community at http://loschmidt.chemi.muni.cz/predictsnp.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15008380
003      
CZ-PrNML
005      
20150331115804.0
007      
ta
008      
150306s2014 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1371/journal.pcbi.1003440 $2 doi
035    __
$a (PubMed)24453961
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Bendl, Jaroslav $u Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic ; Department of Information Systems, Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic ; Center of Biomolecular and Cellular Engineering, International Centre for Clinical Research, St. Anne's University Hospital Brno, Brno, Czech Republic.
245    10
$a PredictSNP: robust and accurate consensus classifier for prediction of disease-related mutations / $c J. Bendl, J. Stourac, O. Salanda, A. Pavelka, ED. Wieben, J. Zendulka, J. Brezovsky, J. Damborsky,
520    9_
$a Single nucleotide variants represent a prevalent form of genetic variation. Mutations in the coding regions are frequently associated with the development of various genetic diseases. Computational tools for the prediction of the effects of mutations on protein function are very important for analysis of single nucleotide variants and their prioritization for experimental characterization. Many computational tools are already widely employed for this purpose. Unfortunately, their comparison and further improvement is hindered by large overlaps between the training datasets and benchmark datasets, which lead to biased and overly optimistic reported performances. In this study, we have constructed three independent datasets by removing all duplicities, inconsistencies and mutations previously used in the training of evaluated tools. The benchmark dataset containing over 43,000 mutations was employed for the unbiased evaluation of eight established prediction tools: MAPP, nsSNPAnalyzer, PANTHER, PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT and SNAP. The six best performing tools were combined into a consensus classifier PredictSNP, resulting into significantly improved prediction performance, and at the same time returned results for all mutations, confirming that consensus prediction represents an accurate and robust alternative to the predictions delivered by individual tools. A user-friendly web interface enables easy access to all eight prediction tools, the consensus classifier PredictSNP and annotations from the Protein Mutant Database and the UniProt database. The web server and the datasets are freely available to the academic community at http://loschmidt.chemi.muni.cz/predictsnp.
650    _2
$a algoritmy $7 D000465
650    _2
$a výpočetní biologie $x metody $7 D019295
650    _2
$a počítačová simulace $7 D003198
650    _2
$a databáze proteinů $7 D030562
650    _2
$a genetické nemoci vrozené $x genetika $7 D030342
650    _2
$a genetická variace $7 D014644
650    _2
$a genom lidský $7 D015894
650    _2
$a lidé $7 D006801
650    _2
$a internet $7 D020407
650    12
$a mutace $7 D009154
650    _2
$a fylogeneze $7 D010802
650    12
$a jednonukleotidový polymorfismus $7 D020641
650    _2
$a software $7 D012984
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Stourac, Jan $u Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic ; Center of Biomolecular and Cellular Engineering, International Centre for Clinical Research, St. Anne's University Hospital Brno, Brno, Czech Republic.
700    1_
$a Salanda, Ondrej $u Department of Information Systems, Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic.
700    1_
$a Pavelka, Antonin $u Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic.
700    1_
$a Wieben, Eric D $u Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, New York, United States of America.
700    1_
$a Zendulka, Jaroslav $u Department of Information Systems, Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic.
700    1_
$a Brezovsky, Jan $u Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic.
700    1_
$a Damborsky, Jiri $u Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic ; Center of Biomolecular and Cellular Engineering, International Centre for Clinical Research, St. Anne's University Hospital Brno, Brno, Czech Republic.
773    0_
$w MED00008919 $t PLoS computational biology $x 1553-7358 $g Roč. 10, č. 1 (2014), s. e1003440
856    41
$u https://pubmed.ncbi.nlm.nih.gov/24453961 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20150306 $b ABA008
991    __
$a 20150331120033 $b ABA008
999    __
$a ok $b bmc $g 1065653 $s 891180
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 10 $c 1 $d e1003440 $i 1553-7358 $m PLoS computational biology $n PLoS Comput Biol $x MED00008919
LZP    __
$a Pubmed-20150306

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...