Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Finite element analysis of customized reconstruction plates for mandibular continuity defect therapy

N. Narra, J. Valášek, M. Hannula, P. Marcián, GK. Sándor, J. Hyttinen, J. Wolff,

. 2014 ; 47 (1) : 264-8.

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

E-resources Online Full text

NLK ProQuest Central from 2003-01-01 to 2 months ago
Health & Medicine (ProQuest) from 2003-01-01 to 2 months ago

Large mandibular continuity defects pose a significant challenge in oral maxillofacial surgery. One solution to this problem is to use computer-guided surgical planning and additive manufacturing technology to produce patient-specific reconstruction plates. However, when designing customized plates, it is important to assess potential biomechanical responses that may vary substantially depending on the size and geometry of the defect. The aim of this study was to assess the design of two customized plates using finite element method (FEM). These plates were designed for the reconstruction of the lower left mandibles of two ameloblastoma cases (patient 1/plate 1 and patient 2/plate 2) with large bone resections differing in both geometry and size. Simulations revealed maximum von Mises stresses of 63 MPa and 108 MPa in plates 1 and 2, and 65 MPa and 190 MPa in the fixation screws of patients 1 and 2. The equivalent strain induced in the bone at the screw-bone interface reached maximum values of 2739 micro-strain for patient 1 and 19,575 micro-strain for patient 2. The results demonstrate the influence of design on the stresses induced in the plate and screw bodies. Of particular note, however, are the differences in the induced strains. Unphysiologically high strains in bone adjacent to screws can cause micro-damage leading to bone resorption. This can adversely affect the anchoring capabilities of the screws. Thus, while custom plates offer optimal anatomical fit, attention should be paid to the expected physiological forces on the plates and the induced stresses and strains in the plate-screw-bone assembly.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15008494
003      
CZ-PrNML
005      
20150327111245.0
007      
ta
008      
150306s2014 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jbiomech.2013.11.016 $2 doi
035    __
$a (PubMed)24290177
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Narra, Nathaniel $u Department of Electronics and Communications Engineering, Tampere University of Technology, 33520 Tampere, Finland; BioMediTech, Institute of Biosciences and Medical Technology, Tampere, Finland. Electronic address: nathaniel.narragirish@tut.fi.
245    10
$a Finite element analysis of customized reconstruction plates for mandibular continuity defect therapy / $c N. Narra, J. Valášek, M. Hannula, P. Marcián, GK. Sándor, J. Hyttinen, J. Wolff,
520    9_
$a Large mandibular continuity defects pose a significant challenge in oral maxillofacial surgery. One solution to this problem is to use computer-guided surgical planning and additive manufacturing technology to produce patient-specific reconstruction plates. However, when designing customized plates, it is important to assess potential biomechanical responses that may vary substantially depending on the size and geometry of the defect. The aim of this study was to assess the design of two customized plates using finite element method (FEM). These plates were designed for the reconstruction of the lower left mandibles of two ameloblastoma cases (patient 1/plate 1 and patient 2/plate 2) with large bone resections differing in both geometry and size. Simulations revealed maximum von Mises stresses of 63 MPa and 108 MPa in plates 1 and 2, and 65 MPa and 190 MPa in the fixation screws of patients 1 and 2. The equivalent strain induced in the bone at the screw-bone interface reached maximum values of 2739 micro-strain for patient 1 and 19,575 micro-strain for patient 2. The results demonstrate the influence of design on the stresses induced in the plate and screw bodies. Of particular note, however, are the differences in the induced strains. Unphysiologically high strains in bone adjacent to screws can cause micro-damage leading to bone resorption. This can adversely affect the anchoring capabilities of the screws. Thus, while custom plates offer optimal anatomical fit, attention should be paid to the expected physiological forces on the plates and the induced stresses and strains in the plate-screw-bone assembly.
650    _2
$a dospělí $7 D000328
650    _2
$a kostní destičky $7 D001860
650    12
$a kostní šrouby $7 D001863
650    _2
$a počítačová simulace $7 D003198
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a analýza metodou konečných prvků $7 D020342
650    _2
$a lidé $7 D006801
650    _2
$a počítačové zpracování obrazu $x metody $7 D007091
650    _2
$a interní fixátory $7 D016268
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a mandibula $x anatomie a histologie $x chirurgie $7 D008334
650    _2
$a lidé středního věku $7 D008875
650    _2
$a tlak $7 D011312
650    _2
$a zákroky plastické chirurgie $x metody $7 D019651
650    _2
$a software $7 D012984
650    12
$a mechanický stres $7 D013314
650    _2
$a počítačová rentgenová tomografie $x metody $7 D014057
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Valášek, Jiří $u Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic.
700    1_
$a Hannula, Markus $u Department of Electronics and Communications Engineering, Tampere University of Technology, 33520 Tampere, Finland; BioMediTech, Institute of Biosciences and Medical Technology, Tampere, Finland.
700    1_
$a Marcián, Petr $u Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic.
700    1_
$a Sándor, George K $u Institute of Biomedical Technology, University of Tampere, Tampere, Finland; Department of Oral and Maxillofacial Surgery, University of Oulu, Oulu, Finland.
700    1_
$a Hyttinen, Jari $u Department of Electronics and Communications Engineering, Tampere University of Technology, 33520 Tampere, Finland; BioMediTech, Institute of Biosciences and Medical Technology, Tampere, Finland.
700    1_
$a Wolff, Jan $u Institute of Biomedical Technology, University of Tampere, Tampere, Finland; Oral and Maxillofacial Unit, Department of Otorhinolaryngology, Tampere University Hospital, Tampere, Finland.
773    0_
$w MED00002553 $t Journal of biomechanics $x 1873-2380 $g Roč. 47, č. 1 (2014), s. 264-8
856    41
$u https://pubmed.ncbi.nlm.nih.gov/24290177 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20150306 $b ABA008
991    __
$a 20150327111607 $b ABA008
999    __
$a ok $b bmc $g 1065767 $s 891294
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 47 $c 1 $d 264-8 $i 1873-2380 $m Journal of biomechanics $n J Biomech $x MED00002553
LZP    __
$a Pubmed-20150306

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...