• Je něco špatně v tomto záznamu ?

Determining Omics spatiotemporal dimensions using exciting new nanoscopy techniques to assess complex cell responses to DNA damage: part B--structuromics

M. Falk, M. Hausmann, E. Lukášová, A. Biswas, G. Hildenbrand, M. Davídková, E. Krasavin, Z. Kleibl, I. Falková, L. Ježková, L. Štefančíková, J. Ševčík, M. Hofer, A. Bačíková, P. Matula, A. Boreyko, J. Vachelová, A. Michaelidisová, S. Kozubek,

. 2014 ; 24 (3) : 225-47.

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc15023193

Recent groundbreaking developments in Omics and bioinformatics have generated new hope for overcoming the complexity and variability of (radio)biological systems while simultaneously shedding more light on fundamental radiobiological questions that have remained unanswered for decades. In the era of Omics, our knowledge of how genes and dozens of proteins interact in the frame of complex signaling and repair pathways (or, rather, networks) to preserve the integrity of the genome has been rapidly expanding. Nevertheless, these functional networks must be observed with strong correspondence to the cell nucleus, which is the main target of ionizing radiation. Information regarding these intricate processes cannot be achieved using high-throughput Omics approaches alone; it requires sophisticated structural probing and imaging. In the first part of this review, the article "Giving Omics Spatiotemporal Dimensions Using Exciting New Nanoscopy Techniques to Assess Complex Cell Responses to DNA Damage: Part A--Radiomics," we showed the development of different Omics solutions and how they are contributing to a better understanding of cellular radiation response. In this Part B we show how high-resolution confocal microscopy as well as novel approaches of molecular localization nanoscopy fill the gaps to successfully place Omics data in the context of space and time. The dynamics of double-strand breaks during repair processes and chromosomal rearrangements at the microscale correlated to aberration induction are explained. For the first time we visualize pan-nuclear nucleosomal rearrangements and clustering at the nanoscale during repair processes. Finally, we introduce a novel method of specific chromatin nanotargeting based on a computer database search of uniquely binding oligonucleotide combinations (COMBO-FISH). With these challenging techniques on hand, we speculate future perspectives that may combine specific COMBO-FISH nanoprobing and structural nanoscopy to observe structure-function correlations in living cells in real-time. Thus, the Omics networks obtained from function analyses may be enriched by real-time visualization of Structuromics.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15023193
003      
CZ-PrNML
005      
20150731103347.0
007      
ta
008      
150709s2014 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1615/critreveukaryotgeneexpr.v24.i3.40 $2 doi
035    __
$a (PubMed)25072148
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Falk, Martin $u Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
245    10
$a Determining Omics spatiotemporal dimensions using exciting new nanoscopy techniques to assess complex cell responses to DNA damage: part B--structuromics / $c M. Falk, M. Hausmann, E. Lukášová, A. Biswas, G. Hildenbrand, M. Davídková, E. Krasavin, Z. Kleibl, I. Falková, L. Ježková, L. Štefančíková, J. Ševčík, M. Hofer, A. Bačíková, P. Matula, A. Boreyko, J. Vachelová, A. Michaelidisová, S. Kozubek,
520    9_
$a Recent groundbreaking developments in Omics and bioinformatics have generated new hope for overcoming the complexity and variability of (radio)biological systems while simultaneously shedding more light on fundamental radiobiological questions that have remained unanswered for decades. In the era of Omics, our knowledge of how genes and dozens of proteins interact in the frame of complex signaling and repair pathways (or, rather, networks) to preserve the integrity of the genome has been rapidly expanding. Nevertheless, these functional networks must be observed with strong correspondence to the cell nucleus, which is the main target of ionizing radiation. Information regarding these intricate processes cannot be achieved using high-throughput Omics approaches alone; it requires sophisticated structural probing and imaging. In the first part of this review, the article "Giving Omics Spatiotemporal Dimensions Using Exciting New Nanoscopy Techniques to Assess Complex Cell Responses to DNA Damage: Part A--Radiomics," we showed the development of different Omics solutions and how they are contributing to a better understanding of cellular radiation response. In this Part B we show how high-resolution confocal microscopy as well as novel approaches of molecular localization nanoscopy fill the gaps to successfully place Omics data in the context of space and time. The dynamics of double-strand breaks during repair processes and chromosomal rearrangements at the microscale correlated to aberration induction are explained. For the first time we visualize pan-nuclear nucleosomal rearrangements and clustering at the nanoscale during repair processes. Finally, we introduce a novel method of specific chromatin nanotargeting based on a computer database search of uniquely binding oligonucleotide combinations (COMBO-FISH). With these challenging techniques on hand, we speculate future perspectives that may combine specific COMBO-FISH nanoprobing and structural nanoscopy to observe structure-function correlations in living cells in real-time. Thus, the Omics networks obtained from function analyses may be enriched by real-time visualization of Structuromics.
650    _2
$a buněčné jádro $x účinky záření $7 D002467
650    _2
$a chromatin $x genetika $x účinky záření $7 D002843
650    _2
$a DNA $x účinky záření $7 D004247
650    _2
$a dvouřetězcové zlomy DNA $x účinky záření $7 D053903
650    _2
$a oprava DNA $x genetika $7 D004260
650    _2
$a genom $x genetika $7 D016678
650    _2
$a nestabilita genomu $7 D042822
650    _2
$a lidé $7 D006801
650    _2
$a konfokální mikroskopie $7 D018613
650    _2
$a ionizující záření $7 D011839
650    _2
$a translokace genetická $x genetika $x účinky záření $7 D014178
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a přehledy $7 D016454
700    1_
$a Hausmann, Michael $u Kirchhoff Institute for Physics, University of Heidelberg, Heidelberg, Germany.
700    1_
$a Lukášová, Emílie $u Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
700    1_
$a Biswas, Abin $u Kirchhoff Institute for Physics, University of Heidelberg, Heidelberg, Germany; Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany.
700    1_
$a Hildenbrand, Georg $u Department of Radiation Oncology, University Medical Center Mannheim, Kirchhoff Institute for Physics, University of Heidelberg, Heidelberg, Germany.
700    1_
$a Davídková, Marie $u Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rez, Czech Republic.
700    1_
$a Krasavin, Evgeny $u Joint Institute for Nuclear Research, Dubna, Moscow, Russia.
700    1_
$a Kleibl, Zdeněk $u Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
700    1_
$a Falková, Iva $u Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
700    1_
$a Ježková, Lucie $u Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic; Joint Institute for Nuclear Research, Dubna, Moscow, Russia; Institute of Chemical Technology Prague, Prague, Czech Republic.
700    1_
$a Štefančíková, Lenka $u Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
700    1_
$a Ševčík, Jan $u Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
700    1_
$a Hofer, Michal $u Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
700    1_
$a Bačíková, Alena $u Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
700    1_
$a Matula, Pavel $u Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic; Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University, Brno, Czech Republic.
700    1_
$a Boreyko, Alla $u Joint Institute for Nuclear Research, Dubna, Moscow, Russia.
700    1_
$a Vachelová, Jana $u Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rez, Czech Republic.
700    1_
$a Michaelidisová, Anna $u Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Rez, Czech Republic; Proton Therapy Center, Prague, Czech Republic.
700    1_
$a Kozubek, Stanislav $u Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
773    0_
$w MED00180208 $t Critical reviews in eukaryotic gene expression $x 1045-4403 $g Roč. 24, č. 3 (2014), s. 225-47
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25072148 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20150709 $b ABA008
991    __
$a 20150731103436 $b ABA008
999    __
$a ok $b bmc $g 1083531 $s 906186
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 24 $c 3 $d 225-47 $i 1045-4403 $m Crit Rev Eukaryot Gene Expr $n Crit Rev Eukaryot Gene Expr $x MED00180208
LZP    __
$a Pubmed-20150709

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...