• Je něco špatně v tomto záznamu ?

histoneHMM: Differential analysis of histone modifications with broad genomic footprints

M. Heinig, M. Colomé-Tatché, A. Taudt, C. Rintisch, S. Schafer, M. Pravenec, N. Hubner, M. Vingron, F. Johannes,

. 2015 ; 16 (-) : 60. [pub] 20150222

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc15031386

BACKGROUND: ChIP-seq has become a routine method for interrogating the genome-wide distribution of various histone modifications. An important experimental goal is to compare the ChIP-seq profiles between an experimental sample and a reference sample, and to identify regions that show differential enrichment. However, comparative analysis of samples remains challenging for histone modifications with broad domains, such as heterochromatin-associated H3K27me3, as most ChIP-seq algorithms are designed to detect well defined peak-like features. RESULTS: To address this limitation we introduce histoneHMM, a powerful bivariate Hidden Markov Model for the differential analysis of histone modifications with broad genomic footprints. histoneHMM aggregates short-reads over larger regions and takes the resulting bivariate read counts as inputs for an unsupervised classification procedure, requiring no further tuning parameters. histoneHMM outputs probabilistic classifications of genomic regions as being either modified in both samples, unmodified in both samples or differentially modified between samples. We extensively tested histoneHMM in the context of two broad repressive marks, H3K27me3 and H3K9me3, and evaluated region calls with follow up qPCR as well as RNA-seq data. Our results show that histoneHMM outperforms competing methods in detecting functionally relevant differentially modified regions. CONCLUSION: histoneHMM is a fast algorithm written in C++ and compiled as an R package. It runs in the popular R computing environment and thus seamlessly integrates with the extensive bioinformatic tool sets available through Bioconductor. This makeshistoneHMM an attractive choice for the differential analysis of ChIP-seq data. Software is available from http://histonehmm.molgen.mpg.de .

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15031386
003      
CZ-PrNML
005      
20151008115842.0
007      
ta
008      
151005s2015 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12859-015-0491-6 $2 doi
035    __
$a (PubMed)25884684
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Heinig, Matthias $u Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnesstrasse 63-73, Berlin, 14195, Germany. heinig@molgen.mpg.de.
245    10
$a histoneHMM: Differential analysis of histone modifications with broad genomic footprints / $c M. Heinig, M. Colomé-Tatché, A. Taudt, C. Rintisch, S. Schafer, M. Pravenec, N. Hubner, M. Vingron, F. Johannes,
520    9_
$a BACKGROUND: ChIP-seq has become a routine method for interrogating the genome-wide distribution of various histone modifications. An important experimental goal is to compare the ChIP-seq profiles between an experimental sample and a reference sample, and to identify regions that show differential enrichment. However, comparative analysis of samples remains challenging for histone modifications with broad domains, such as heterochromatin-associated H3K27me3, as most ChIP-seq algorithms are designed to detect well defined peak-like features. RESULTS: To address this limitation we introduce histoneHMM, a powerful bivariate Hidden Markov Model for the differential analysis of histone modifications with broad genomic footprints. histoneHMM aggregates short-reads over larger regions and takes the resulting bivariate read counts as inputs for an unsupervised classification procedure, requiring no further tuning parameters. histoneHMM outputs probabilistic classifications of genomic regions as being either modified in both samples, unmodified in both samples or differentially modified between samples. We extensively tested histoneHMM in the context of two broad repressive marks, H3K27me3 and H3K9me3, and evaluated region calls with follow up qPCR as well as RNA-seq data. Our results show that histoneHMM outperforms competing methods in detecting functionally relevant differentially modified regions. CONCLUSION: histoneHMM is a fast algorithm written in C++ and compiled as an R package. It runs in the popular R computing environment and thus seamlessly integrates with the extensive bioinformatic tool sets available through Bioconductor. This makeshistoneHMM an attractive choice for the differential analysis of ChIP-seq data. Software is available from http://histonehmm.molgen.mpg.de .
650    12
$a algoritmy $7 D000465
650    _2
$a zvířata $7 D000818
650    _2
$a chromatinová imunoprecipitace $7 D047369
650    _2
$a výpočetní biologie $x metody $7 D019295
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a genomika $x metody $7 D023281
650    _2
$a vysoce účinné nukleotidové sekvenování $x metody $7 D059014
650    _2
$a histony $x chemie $x genetika $x metabolismus $7 D006657
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a Markovovy řetězce $7 D008390
650    _2
$a myši $7 D051379
650    12
$a posttranslační úpravy proteinů $7 D011499
650    _2
$a krysa rodu Rattus $7 D051381
650    _2
$a kvantitativní polymerázová řetězová reakce $7 D060888
650    12
$a software $7 D012984
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Colomé-Tatché, Maria $u Quantitative Epigenetics, European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, AV, Groningen, 9713, The Netherlands. m.colome.tatche@umcg.nl.
700    1_
$a Taudt, Aaron $u Quantitative Epigenetics, European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, AV, Groningen, 9713, The Netherlands. a.s.taudt@umcg.nl.
700    1_
$a Rintisch, Carola $u Experimental Genetics Group, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13092Berlin, Germany. carola.rintisch@mdc-berlin.de.
700    1_
$a Schafer, Sebastian $u Experimental Genetics Group, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13092Berlin, Germany. sebastian.schaefer@mdc-berlin.de.
700    1_
$a Pravenec, Michal $u Institute of Physiology, Academy of Sciences of the Czeck Republic, Videnska 1083, Prague, 14220, Czech Republic. pravenec@biomed.cas.cz.
700    1_
$a Hubner, Norbert $u Experimental Genetics Group, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13092Berlin, Germany. nhuebner@mdc-berlin.de.
700    1_
$a Vingron, Martin $u Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnesstrasse 63-73, Berlin, 14195, Germany. vingron@molgen.mpg.de.
700    1_
$a Johannes, Frank $u Groningen Bioinformatics Center, University of Groningen, Nijenborgh 7, AG, Groningen, 9747, The Netherlands. frank@johanneslab.org.
773    0_
$w MED00008167 $t BMC bioinformatics $x 1471-2105 $g Roč. 16, č. - (2015), s. 60
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25884684 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20151005 $b ABA008
991    __
$a 20151008120028 $b ABA008
999    __
$a ok $b bmc $g 1092262 $s 914512
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 16 $c - $d 60 $e 20150222 $i 1471-2105 $m BMC bioinformatics $n BMC Bioinformatics $x MED00008167
LZP    __
$a Pubmed-20151005

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...