-
Something wrong with this record ?
histoneHMM: Differential analysis of histone modifications with broad genomic footprints
M. Heinig, M. Colomé-Tatché, A. Taudt, C. Rintisch, S. Schafer, M. Pravenec, N. Hubner, M. Vingron, F. Johannes,
Language English Country England, Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
BioMedCentral
from 2000-12-01
BioMedCentral Open Access
from 2000
Directory of Open Access Journals
from 2000
Free Medical Journals
from 2000
PubMed Central
from 2000
Europe PubMed Central
from 2000
ProQuest Central
from 2009-01-01
Open Access Digital Library
from 2000-07-01
Open Access Digital Library
from 2000-01-01
Open Access Digital Library
from 2000-01-01
Medline Complete (EBSCOhost)
from 2000-01-01
Health & Medicine (ProQuest)
from 2009-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2000
Springer Nature OA/Free Journals
from 2000-12-01
- MeSH
- Algorithms * MeSH
- Chromatin Immunoprecipitation MeSH
- Genomics methods MeSH
- Histones chemistry genetics metabolism MeSH
- Rats MeSH
- Real-Time Polymerase Chain Reaction MeSH
- Humans MeSH
- Markov Chains MeSH
- Mice MeSH
- Protein Processing, Post-Translational * MeSH
- Software * MeSH
- Computational Biology methods MeSH
- High-Throughput Nucleotide Sequencing methods MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: ChIP-seq has become a routine method for interrogating the genome-wide distribution of various histone modifications. An important experimental goal is to compare the ChIP-seq profiles between an experimental sample and a reference sample, and to identify regions that show differential enrichment. However, comparative analysis of samples remains challenging for histone modifications with broad domains, such as heterochromatin-associated H3K27me3, as most ChIP-seq algorithms are designed to detect well defined peak-like features. RESULTS: To address this limitation we introduce histoneHMM, a powerful bivariate Hidden Markov Model for the differential analysis of histone modifications with broad genomic footprints. histoneHMM aggregates short-reads over larger regions and takes the resulting bivariate read counts as inputs for an unsupervised classification procedure, requiring no further tuning parameters. histoneHMM outputs probabilistic classifications of genomic regions as being either modified in both samples, unmodified in both samples or differentially modified between samples. We extensively tested histoneHMM in the context of two broad repressive marks, H3K27me3 and H3K9me3, and evaluated region calls with follow up qPCR as well as RNA-seq data. Our results show that histoneHMM outperforms competing methods in detecting functionally relevant differentially modified regions. CONCLUSION: histoneHMM is a fast algorithm written in C++ and compiled as an R package. It runs in the popular R computing environment and thus seamlessly integrates with the extensive bioinformatic tool sets available through Bioconductor. This makeshistoneHMM an attractive choice for the differential analysis of ChIP-seq data. Software is available from http://histonehmm.molgen.mpg.de .
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc15031386
- 003
- CZ-PrNML
- 005
- 20151008115842.0
- 007
- ta
- 008
- 151005s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1186/s12859-015-0491-6 $2 doi
- 035 __
- $a (PubMed)25884684
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Heinig, Matthias $u Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnesstrasse 63-73, Berlin, 14195, Germany. heinig@molgen.mpg.de.
- 245 10
- $a histoneHMM: Differential analysis of histone modifications with broad genomic footprints / $c M. Heinig, M. Colomé-Tatché, A. Taudt, C. Rintisch, S. Schafer, M. Pravenec, N. Hubner, M. Vingron, F. Johannes,
- 520 9_
- $a BACKGROUND: ChIP-seq has become a routine method for interrogating the genome-wide distribution of various histone modifications. An important experimental goal is to compare the ChIP-seq profiles between an experimental sample and a reference sample, and to identify regions that show differential enrichment. However, comparative analysis of samples remains challenging for histone modifications with broad domains, such as heterochromatin-associated H3K27me3, as most ChIP-seq algorithms are designed to detect well defined peak-like features. RESULTS: To address this limitation we introduce histoneHMM, a powerful bivariate Hidden Markov Model for the differential analysis of histone modifications with broad genomic footprints. histoneHMM aggregates short-reads over larger regions and takes the resulting bivariate read counts as inputs for an unsupervised classification procedure, requiring no further tuning parameters. histoneHMM outputs probabilistic classifications of genomic regions as being either modified in both samples, unmodified in both samples or differentially modified between samples. We extensively tested histoneHMM in the context of two broad repressive marks, H3K27me3 and H3K9me3, and evaluated region calls with follow up qPCR as well as RNA-seq data. Our results show that histoneHMM outperforms competing methods in detecting functionally relevant differentially modified regions. CONCLUSION: histoneHMM is a fast algorithm written in C++ and compiled as an R package. It runs in the popular R computing environment and thus seamlessly integrates with the extensive bioinformatic tool sets available through Bioconductor. This makeshistoneHMM an attractive choice for the differential analysis of ChIP-seq data. Software is available from http://histonehmm.molgen.mpg.de .
- 650 12
- $a algoritmy $7 D000465
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a chromatinová imunoprecipitace $7 D047369
- 650 _2
- $a výpočetní biologie $x metody $7 D019295
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a genomika $x metody $7 D023281
- 650 _2
- $a vysoce účinné nukleotidové sekvenování $x metody $7 D059014
- 650 _2
- $a histony $x chemie $x genetika $x metabolismus $7 D006657
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a Markovovy řetězce $7 D008390
- 650 _2
- $a myši $7 D051379
- 650 12
- $a posttranslační úpravy proteinů $7 D011499
- 650 _2
- $a krysa rodu Rattus $7 D051381
- 650 _2
- $a kvantitativní polymerázová řetězová reakce $7 D060888
- 650 12
- $a software $7 D012984
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Colomé-Tatché, Maria $u Quantitative Epigenetics, European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, AV, Groningen, 9713, The Netherlands. m.colome.tatche@umcg.nl.
- 700 1_
- $a Taudt, Aaron $u Quantitative Epigenetics, European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, AV, Groningen, 9713, The Netherlands. a.s.taudt@umcg.nl.
- 700 1_
- $a Rintisch, Carola $u Experimental Genetics Group, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13092Berlin, Germany. carola.rintisch@mdc-berlin.de.
- 700 1_
- $a Schafer, Sebastian $u Experimental Genetics Group, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13092Berlin, Germany. sebastian.schaefer@mdc-berlin.de.
- 700 1_
- $a Pravenec, Michal $u Institute of Physiology, Academy of Sciences of the Czeck Republic, Videnska 1083, Prague, 14220, Czech Republic. pravenec@biomed.cas.cz.
- 700 1_
- $a Hubner, Norbert $u Experimental Genetics Group, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13092Berlin, Germany. nhuebner@mdc-berlin.de.
- 700 1_
- $a Vingron, Martin $u Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnesstrasse 63-73, Berlin, 14195, Germany. vingron@molgen.mpg.de.
- 700 1_
- $a Johannes, Frank $u Groningen Bioinformatics Center, University of Groningen, Nijenborgh 7, AG, Groningen, 9747, The Netherlands. frank@johanneslab.org.
- 773 0_
- $w MED00008167 $t BMC bioinformatics $x 1471-2105 $g Roč. 16, č. - (2015), s. 60
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25884684 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20151005 $b ABA008
- 991 __
- $a 20151008120028 $b ABA008
- 999 __
- $a ok $b bmc $g 1092262 $s 914512
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 16 $c - $d 60 $e 20150222 $i 1471-2105 $m BMC bioinformatics $n BMC Bioinformatics $x MED00008167
- LZP __
- $a Pubmed-20151005