• Je něco špatně v tomto záznamu ?

Metabolism of aflatoxins: key enzymes and interindividual as well as interspecies differences

V. Dohnal, Q. Wu, K. Kuča,

. 2014 ; 88 (9) : 1635-44. [pub] 20140716

Jazyk angličtina Země Německo

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc15031959
E-zdroje Online Plný text

NLK ProQuest Central od 2002-01-01 do Před 1 rokem
Medline Complete (EBSCOhost) od 2000-01-01 do Před 1 rokem
Health & Medicine (ProQuest) od 2002-01-01 do Před 1 rokem
Public Health Database (ProQuest) od 2002-01-01 do Před 1 rokem

Aflatoxins are potent hepatocarcinogen in animal models and suspected carcinogen in humans. The most important aflatoxin in terms of toxic potency and occurrence is aflatoxin B1 (AFB1). In this review, we mainly summarized the key metabolizing enzymes of AFB1 in animals and humans. Moreover, the interindividual and the interspecies differences in AFB1 metabolism are highly concerned. In human liver, CYP3A4 plays an important role in biotransforming AFB1 to the toxic product AFB1-8,9-epoxide. In human lung, CYP2A13 has a significant activity in metabolizing AFB1 to AFB1-8,9-epoxide and AFM1-8,9-epoxide. The epoxide of AFB1-8,9-epoxide could conjugate with glutathione to reduce the toxicity by glutathione-S-transferase (GST). In poultry species, CYP2A6, CYP3A37, CYP1A5, and CYP1A1 are responsible for bioactivation of AFB1. There are interindividual variations in the rate of activation of aflatoxins in various species, and there are also differences between children and adults. The age and living regions are important factors affecting resistance of species to AFB1. The rate of AFB1-8,9-epoxide formation and its conjugation with glutathione are key parameters in interspecies and interindividual differences in sensitivity to the toxic effect of AFB1. This review provides an important information for key metabolizing enzymes and the global metabolism of aflatoxins in different species.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc15031959
003      
CZ-PrNML
005      
20151008111630.0
007      
ta
008      
151005s2014 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s00204-014-1312-9 $2 doi
035    __
$a (PubMed)25027283
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Dohnal, Vlastimil $u Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
245    10
$a Metabolism of aflatoxins: key enzymes and interindividual as well as interspecies differences / $c V. Dohnal, Q. Wu, K. Kuča,
520    9_
$a Aflatoxins are potent hepatocarcinogen in animal models and suspected carcinogen in humans. The most important aflatoxin in terms of toxic potency and occurrence is aflatoxin B1 (AFB1). In this review, we mainly summarized the key metabolizing enzymes of AFB1 in animals and humans. Moreover, the interindividual and the interspecies differences in AFB1 metabolism are highly concerned. In human liver, CYP3A4 plays an important role in biotransforming AFB1 to the toxic product AFB1-8,9-epoxide. In human lung, CYP2A13 has a significant activity in metabolizing AFB1 to AFB1-8,9-epoxide and AFM1-8,9-epoxide. The epoxide of AFB1-8,9-epoxide could conjugate with glutathione to reduce the toxicity by glutathione-S-transferase (GST). In poultry species, CYP2A6, CYP3A37, CYP1A5, and CYP1A1 are responsible for bioactivation of AFB1. There are interindividual variations in the rate of activation of aflatoxins in various species, and there are also differences between children and adults. The age and living regions are important factors affecting resistance of species to AFB1. The rate of AFB1-8,9-epoxide formation and its conjugation with glutathione are key parameters in interspecies and interindividual differences in sensitivity to the toxic effect of AFB1. This review provides an important information for key metabolizing enzymes and the global metabolism of aflatoxins in different species.
650    _2
$a aflatoxin B1 $x metabolismus $x toxicita $7 D016604
650    _2
$a zvířata $7 D000818
650    _2
$a karcinogeny životního prostředí $x metabolismus $x toxicita $7 D002274
650    _2
$a systém (enzymů) cytochromů P-450 $x genetika $x metabolismus $7 D003577
650    _2
$a endoplazmatické retikulum $x účinky léků $x enzymologie $7 D004721
650    _2
$a lidé $7 D006801
650    _2
$a metabolická inaktivace $7 D008658
650    _2
$a střevní sliznice $x účinky léků $x enzymologie $x metabolismus $7 D007413
650    _2
$a játra $x účinky léků $x enzymologie $x metabolismus $7 D008099
650    _2
$a plíce $x účinky léků $x enzymologie $x metabolismus $7 D008168
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a respirační sliznice $x účinky léků $x enzymologie $x metabolismus $7 D020545
650    _2
$a druhová specificita $7 D013045
650    _2
$a toxikokinetika $7 D066007
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a přehledy $7 D016454
700    1_
$a Wu, Qinghua
700    1_
$a Kuča, Kamil
773    0_
$w MED00009265 $t Archives of toxicology $x 1432-0738 $g Roč. 88, č. 9 (2014), s. 1635-44
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25027283 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20151005 $b ABA008
991    __
$a 20151008111816 $b ABA008
999    __
$a ok $b bmc $g 1092835 $s 915085
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2014 $b 88 $c 9 $d 1635-44 $e 20140716 $i 1432-0738 $m Archives of toxicology $n Arch Toxicol $x MED00009265
LZP    __
$a Pubmed-20151005

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace