Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

HCFC1 loss-of-function mutations disrupt neuronal and neural progenitor cells of the developing brain

LA. Jolly, LS. Nguyen, D. Domingo, Y. Sun, S. Barry, M. Hancarova, P. Plevova, M. Vlckova, M. Havlovicova, VM. Kalscheuer, C. Graziano, T. Pippucci, E. Bonora, Z. Sedlacek, J. Gecz,

. 2015 ; 24 (12) : 3335-3347. [pub] 20150303

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16010490

Grantová podpora
NT14200 MZ0 CEP - Centrální evidence projektů

Both gain- and loss-of-function mutations have recently implicated HCFC1 in neurodevelopmental disorders. Here, we extend our previous HCFC1 over-expression studies by employing short hairpin RNA to reduce the expression of Hcfc1 in embryonic neural cells. We show that in contrast to over-expression, loss of Hcfc1 favoured proliferation of neural progenitor cells at the expense of differentiation and promoted axonal growth of post-mitotic neurons. To further support the involvement of HCFC1 in neurological disorders, we report two novel HCFC1 missense variants found in individuals with intellectual disability (ID). One of these variants, together with three previously reported HCFC1 missense variants of unknown pathogenicity, were functionally assessed using multiple cell-based assays. We show that three out of the four variants tested result in a partial loss of HCFC1 function. While over-expression of the wild-type HCFC1 caused reduction in HEK293T cell proliferation and axonal growth of neurons, these effects were alleviated upon over-expression of three of the four HCFC1 variants tested. One of these partial loss-of-function variants disrupted a nuclear localization sequence and the resulting protein displayed reduced ability to localize to the cell nucleus. The other two variants displayed negative effects on the expression of the HCFC1 target gene MMACHC, which is responsible for the metabolism of cobalamin, suggesting that these individuals may also be susceptible to cobalamin deficiency. Together, our work identifies plausible cellular consequences of missense HCFC1 variants and identifies likely and relevant disease mechanisms that converge on embryonic stages of brain development.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16010490
003      
CZ-PrNML
005      
20190918101502.0
007      
ta
008      
160408s2015 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1093/hmg/ddv083 $2 doi
024    7_
$a 10.1093/hmg/ddv083 $2 doi
035    __
$a (PubMed)25740848
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Jolly, Lachlan A $u School of Paediatrics and Reproductive Health, Robinson Research Institute and.
245    10
$a HCFC1 loss-of-function mutations disrupt neuronal and neural progenitor cells of the developing brain / $c LA. Jolly, LS. Nguyen, D. Domingo, Y. Sun, S. Barry, M. Hancarova, P. Plevova, M. Vlckova, M. Havlovicova, VM. Kalscheuer, C. Graziano, T. Pippucci, E. Bonora, Z. Sedlacek, J. Gecz,
520    9_
$a Both gain- and loss-of-function mutations have recently implicated HCFC1 in neurodevelopmental disorders. Here, we extend our previous HCFC1 over-expression studies by employing short hairpin RNA to reduce the expression of Hcfc1 in embryonic neural cells. We show that in contrast to over-expression, loss of Hcfc1 favoured proliferation of neural progenitor cells at the expense of differentiation and promoted axonal growth of post-mitotic neurons. To further support the involvement of HCFC1 in neurological disorders, we report two novel HCFC1 missense variants found in individuals with intellectual disability (ID). One of these variants, together with three previously reported HCFC1 missense variants of unknown pathogenicity, were functionally assessed using multiple cell-based assays. We show that three out of the four variants tested result in a partial loss of HCFC1 function. While over-expression of the wild-type HCFC1 caused reduction in HEK293T cell proliferation and axonal growth of neurons, these effects were alleviated upon over-expression of three of the four HCFC1 variants tested. One of these partial loss-of-function variants disrupted a nuclear localization sequence and the resulting protein displayed reduced ability to localize to the cell nucleus. The other two variants displayed negative effects on the expression of the HCFC1 target gene MMACHC, which is responsible for the metabolism of cobalamin, suggesting that these individuals may also be susceptible to cobalamin deficiency. Together, our work identifies plausible cellular consequences of missense HCFC1 variants and identifies likely and relevant disease mechanisms that converge on embryonic stages of brain development.
650    _2
$a aktivní transport - buněčné jádro $7 D021581
650    _2
$a sekvence aminokyselin $7 D000595
650    _2
$a substituce aminokyselin $7 D019943
650    _2
$a zvířata $7 D000818
650    _2
$a mozek $x cytologie $x embryologie $7 D001921
650    _2
$a transportní proteiny $x genetika $7 D002352
650    _2
$a buněčná diferenciace $x genetika $7 D002454
650    _2
$a proliferace buněk $7 D049109
650    _2
$a kultivované buňky $7 D002478
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a exprese genu $7 D015870
650    _2
$a HEK293 buňky $7 D057809
650    _2
$a faktor C1 hostitelské buňky $x chemie $x genetika $x metabolismus $7 D051863
650    _2
$a lidé $7 D006801
650    _2
$a mentální retardace $x genetika $7 D008607
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a myši $7 D051379
650    12
$a mutace $7 D009154
650    _2
$a nervové kmenové buňky $x cytologie $x metabolismus $7 D058953
650    _2
$a rodokmen $7 D010375
650    _2
$a RNA interference $7 D034622
650    _2
$a malá interferující RNA $x genetika $7 D034741
650    _2
$a transdukce genetická $7 D014161
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Nguyen, Lam Son $u INSERM UMR 1163, Laboratory of Molecular and Pathophysiological Bases of Cognitive Disorders, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Necker-Enfants Malades Hospital, 75015 Paris, France.
700    1_
$a Domingo, Deepti $u School of Molecular and Biomedical Sciences, University of Adelaide, Adelaide 5000, Australia.
700    1_
$a Sun, Ying $u School of Paediatrics and Reproductive Health, Robinson Research Institute and.
700    1_
$a Barry, Simon $u School of Paediatrics and Reproductive Health.
700    1_
$a Hančárová, Miroslava $u Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic. $7 xx0275406
700    1_
$a Plevová, Pavlína $u Department of Medical Genetics, University Hospital Ostrava, tr. 17. listopadu 1790, 708 52 Ostrava, Czech Republic. $7 xx0044813
700    1_
$a Vlčková, Markéta $u Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic. $7 xx0225277
700    1_
$a Havlovicová, Markéta $u Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic. $7 xx0066532
700    1_
$a Kalscheuer, Vera M $u Department of Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, D-14195 Berlin, Germany and.
700    1_
$a Graziano, Claudio $u Unit of Medical Genetics, Department of Medical and Surgical Sciences, DIMEC, St.Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy.
700    1_
$a Pippucci, Tommaso $u Unit of Medical Genetics, Department of Medical and Surgical Sciences, DIMEC, St.Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy.
700    1_
$a Bonora, Elena $u Unit of Medical Genetics, Department of Medical and Surgical Sciences, DIMEC, St.Orsola-Malpighi Hospital, University of Bologna, Bologna 40138, Italy.
700    1_
$a Sedláček, Zdeněk, $u Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic. $d 1960- $7 skuk0005184
700    1_
$a Gecz, Jozef $u School of Paediatrics and Reproductive Health, Robinson Research Institute and School of Molecular and Biomedical Sciences, University of Adelaide, Adelaide 5000, Australia, jozef.gecz@adelaide.edu.au.
773    0_
$w MED00002077 $t Human molecular genetics $x 1460-2083 $g Roč. 24, č. 12 (2015), s. 3335-3347
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25740848 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160408 $b ABA008
991    __
$a 20190918101852 $b ABA008
999    __
$a ok $b bmc $g 1113919 $s 934858
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 24 $c 12 $d 3335-3347 $e 20150303 $i 1460-2083 $m Human molecular genetics $n Hum Mol Genet $x MED00002077
GRA    __
$a NT14200 $p MZ0
LZP    __
$a Pubmed-20160408

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...