• Je něco špatně v tomto záznamu ?

Structural modeling and patch-clamp analysis of pain-related mutation TRPA1-N855S reveal inter-subunit salt bridges stabilizing the channel open state

V. Zíma, K. Witschas, A. Hynkova, L. Zímová, I. Barvík, V. Vlachova,

. 2015 ; 93 (-) : 294-307. [pub] 20150225

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc16010514

The ankyrin transient receptor potential channel TRPA1 is a polymodal sensor for noxious stimuli, and hence a promising target for treating chronic pain. This tetrameric six-transmembrane segment (S1-S6) channel can be activated by various pungent chemicals, such as allyl isothiocyanate or cinnamaldehyde, but also by intracellular Ca(2+) or depolarizing voltages. Within the S4-S5 linker of human TRPA1, a gain-of-function mutation, N855S, was recently found to underlie familial episodic pain syndrome, manifested by bouts of severe upper body pain, triggered by physical stress, fasting, or cold. To clarify the structural basis for this channelopathy, we derive a structural model of TRPA1 by combining homology modeling, molecular dynamics simulations, point mutagenesis and electrophysiology. In the vicinity of N855, the model reveals inter-subunit salt bridges between E854 and K868. Using the heterologous expression of recombinant wild-type and mutant TRPA1 channels in HEK293T cells, we indeed found that the charge-reversal mutants E854R and K868E exhibited dramatically reduced responses to chemical and voltage stimuli, whereas the charge-swapping mutation E854R/K868E substantially rescued their functionalities. Moreover, mutation analysis of highly conserved charged residues within the S4-S5 region revealed a gain-of-function phenotype for R852E with an increased basal channel activity, a loss of Ca(2+)-induced potentiation and an accelerated Ca(2+)-dependent inactivation. Based on the model and on a comparison with the recently revealed atomic-level structure of the related channel TRPV1, we propose that inter-subunit salt bridges between adjacent S4-S5 regions are crucial for stabilizing the conformations associated with chemically and voltage-induced gating of the TRPA1 ion channel.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16010514
003      
CZ-PrNML
005      
20160415130729.0
007      
ta
008      
160408s2015 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.neuropharm.2015.02.018 $2 doi
024    7_
$a 10.1016/j.neuropharm.2015.02.018 $2 doi
035    __
$a (PubMed)25724085
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Zíma, Vlastimil $u Division of Biomolecular Physics, Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2, Czech Republic.
245    10
$a Structural modeling and patch-clamp analysis of pain-related mutation TRPA1-N855S reveal inter-subunit salt bridges stabilizing the channel open state / $c V. Zíma, K. Witschas, A. Hynkova, L. Zímová, I. Barvík, V. Vlachova,
520    9_
$a The ankyrin transient receptor potential channel TRPA1 is a polymodal sensor for noxious stimuli, and hence a promising target for treating chronic pain. This tetrameric six-transmembrane segment (S1-S6) channel can be activated by various pungent chemicals, such as allyl isothiocyanate or cinnamaldehyde, but also by intracellular Ca(2+) or depolarizing voltages. Within the S4-S5 linker of human TRPA1, a gain-of-function mutation, N855S, was recently found to underlie familial episodic pain syndrome, manifested by bouts of severe upper body pain, triggered by physical stress, fasting, or cold. To clarify the structural basis for this channelopathy, we derive a structural model of TRPA1 by combining homology modeling, molecular dynamics simulations, point mutagenesis and electrophysiology. In the vicinity of N855, the model reveals inter-subunit salt bridges between E854 and K868. Using the heterologous expression of recombinant wild-type and mutant TRPA1 channels in HEK293T cells, we indeed found that the charge-reversal mutants E854R and K868E exhibited dramatically reduced responses to chemical and voltage stimuli, whereas the charge-swapping mutation E854R/K868E substantially rescued their functionalities. Moreover, mutation analysis of highly conserved charged residues within the S4-S5 region revealed a gain-of-function phenotype for R852E with an increased basal channel activity, a loss of Ca(2+)-induced potentiation and an accelerated Ca(2+)-dependent inactivation. Based on the model and on a comparison with the recently revealed atomic-level structure of the related channel TRPV1, we propose that inter-subunit salt bridges between adjacent S4-S5 regions are crucial for stabilizing the conformations associated with chemically and voltage-induced gating of the TRPA1 ion channel.
650    _2
$a sekvence aminokyselin $7 D000595
650    _2
$a zvířata $7 D000818
650    _2
$a asparagin $x genetika $7 D001216
650    _2
$a vápník $x metabolismus $7 D002118
650    _2
$a vápníkové kanály $x chemie $x genetika $x metabolismus $7 D015220
650    _2
$a elektrická stimulace $7 D004558
650    _2
$a HEK293 buňky $7 D057809
650    _2
$a lidé $7 D006801
650    _2
$a gating iontového kanálu $x účinky léků $x fyziologie $7 D015640
650    _2
$a isothiokyanatany $x farmakologie $7 D017879
650    _2
$a membránové potenciály $x genetika $7 D008564
650    12
$a molekulární modely $7 D008958
650    _2
$a mutageneze $7 D016296
650    _2
$a mutace $x genetika $7 D009154
650    _2
$a proteiny nervové tkáně $x chemie $x genetika $x metabolismus $7 D009419
650    _2
$a metoda terčíkového zámku $7 D018408
650    _2
$a terciární struktura proteinů $7 D017434
650    _2
$a serin $x genetika $7 D012694
650    _2
$a transfekce $7 D014162
650    _2
$a kationtové kanály TRP $x chemie $x genetika $x metabolismus $7 D050051
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Witschas, Katja $u Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.
700    1_
$a Hynkova, Anna $u Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Prague 2, Czech Republic.
700    1_
$a Zímová, Lucie $u Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.
700    1_
$a Barvík, Ivan $u Division of Biomolecular Physics, Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2, Czech Republic.
700    1_
$a Vlachova, Viktorie $u Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic. Electronic address: vlachova@biomed.cas.cz.
773    0_
$w MED00003497 $t Neuropharmacology $x 1873-7064 $g Roč. 93, č. - (2015), s. 294-307
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25724085 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160408 $b ABA008
991    __
$a 20160415130814 $b ABA008
999    __
$a ok $b bmc $g 1113943 $s 934882
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 93 $c - $d 294-307 $e 20150225 $i 1873-7064 $m Neuropharmacology $n Neuropharmacology $x MED00003497
LZP    __
$a Pubmed-20160408

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...