-
Je něco špatně v tomto záznamu ?
Structural modeling and patch-clamp analysis of pain-related mutation TRPA1-N855S reveal inter-subunit salt bridges stabilizing the channel open state
V. Zíma, K. Witschas, A. Hynkova, L. Zímová, I. Barvík, V. Vlachova,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- asparagin genetika MeSH
- elektrická stimulace MeSH
- gating iontového kanálu účinky léků fyziologie MeSH
- HEK293 buňky MeSH
- isothiokyanatany farmakologie MeSH
- kationtové kanály TRP chemie genetika metabolismus MeSH
- lidé MeSH
- membránové potenciály genetika MeSH
- metoda terčíkového zámku MeSH
- molekulární modely * MeSH
- mutace genetika MeSH
- mutageneze MeSH
- proteiny nervové tkáně chemie genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- serin genetika MeSH
- terciární struktura proteinů MeSH
- transfekce MeSH
- vápník metabolismus MeSH
- vápníkové kanály chemie genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The ankyrin transient receptor potential channel TRPA1 is a polymodal sensor for noxious stimuli, and hence a promising target for treating chronic pain. This tetrameric six-transmembrane segment (S1-S6) channel can be activated by various pungent chemicals, such as allyl isothiocyanate or cinnamaldehyde, but also by intracellular Ca(2+) or depolarizing voltages. Within the S4-S5 linker of human TRPA1, a gain-of-function mutation, N855S, was recently found to underlie familial episodic pain syndrome, manifested by bouts of severe upper body pain, triggered by physical stress, fasting, or cold. To clarify the structural basis for this channelopathy, we derive a structural model of TRPA1 by combining homology modeling, molecular dynamics simulations, point mutagenesis and electrophysiology. In the vicinity of N855, the model reveals inter-subunit salt bridges between E854 and K868. Using the heterologous expression of recombinant wild-type and mutant TRPA1 channels in HEK293T cells, we indeed found that the charge-reversal mutants E854R and K868E exhibited dramatically reduced responses to chemical and voltage stimuli, whereas the charge-swapping mutation E854R/K868E substantially rescued their functionalities. Moreover, mutation analysis of highly conserved charged residues within the S4-S5 region revealed a gain-of-function phenotype for R852E with an increased basal channel activity, a loss of Ca(2+)-induced potentiation and an accelerated Ca(2+)-dependent inactivation. Based on the model and on a comparison with the recently revealed atomic-level structure of the related channel TRPV1, we propose that inter-subunit salt bridges between adjacent S4-S5 regions are crucial for stabilizing the conformations associated with chemically and voltage-induced gating of the TRPA1 ion channel.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16010514
- 003
- CZ-PrNML
- 005
- 20160415130729.0
- 007
- ta
- 008
- 160408s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.neuropharm.2015.02.018 $2 doi
- 024 7_
- $a 10.1016/j.neuropharm.2015.02.018 $2 doi
- 035 __
- $a (PubMed)25724085
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Zíma, Vlastimil $u Division of Biomolecular Physics, Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2, Czech Republic.
- 245 10
- $a Structural modeling and patch-clamp analysis of pain-related mutation TRPA1-N855S reveal inter-subunit salt bridges stabilizing the channel open state / $c V. Zíma, K. Witschas, A. Hynkova, L. Zímová, I. Barvík, V. Vlachova,
- 520 9_
- $a The ankyrin transient receptor potential channel TRPA1 is a polymodal sensor for noxious stimuli, and hence a promising target for treating chronic pain. This tetrameric six-transmembrane segment (S1-S6) channel can be activated by various pungent chemicals, such as allyl isothiocyanate or cinnamaldehyde, but also by intracellular Ca(2+) or depolarizing voltages. Within the S4-S5 linker of human TRPA1, a gain-of-function mutation, N855S, was recently found to underlie familial episodic pain syndrome, manifested by bouts of severe upper body pain, triggered by physical stress, fasting, or cold. To clarify the structural basis for this channelopathy, we derive a structural model of TRPA1 by combining homology modeling, molecular dynamics simulations, point mutagenesis and electrophysiology. In the vicinity of N855, the model reveals inter-subunit salt bridges between E854 and K868. Using the heterologous expression of recombinant wild-type and mutant TRPA1 channels in HEK293T cells, we indeed found that the charge-reversal mutants E854R and K868E exhibited dramatically reduced responses to chemical and voltage stimuli, whereas the charge-swapping mutation E854R/K868E substantially rescued their functionalities. Moreover, mutation analysis of highly conserved charged residues within the S4-S5 region revealed a gain-of-function phenotype for R852E with an increased basal channel activity, a loss of Ca(2+)-induced potentiation and an accelerated Ca(2+)-dependent inactivation. Based on the model and on a comparison with the recently revealed atomic-level structure of the related channel TRPV1, we propose that inter-subunit salt bridges between adjacent S4-S5 regions are crucial for stabilizing the conformations associated with chemically and voltage-induced gating of the TRPA1 ion channel.
- 650 _2
- $a sekvence aminokyselin $7 D000595
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a asparagin $x genetika $7 D001216
- 650 _2
- $a vápník $x metabolismus $7 D002118
- 650 _2
- $a vápníkové kanály $x chemie $x genetika $x metabolismus $7 D015220
- 650 _2
- $a elektrická stimulace $7 D004558
- 650 _2
- $a HEK293 buňky $7 D057809
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a gating iontového kanálu $x účinky léků $x fyziologie $7 D015640
- 650 _2
- $a isothiokyanatany $x farmakologie $7 D017879
- 650 _2
- $a membránové potenciály $x genetika $7 D008564
- 650 12
- $a molekulární modely $7 D008958
- 650 _2
- $a mutageneze $7 D016296
- 650 _2
- $a mutace $x genetika $7 D009154
- 650 _2
- $a proteiny nervové tkáně $x chemie $x genetika $x metabolismus $7 D009419
- 650 _2
- $a metoda terčíkového zámku $7 D018408
- 650 _2
- $a terciární struktura proteinů $7 D017434
- 650 _2
- $a serin $x genetika $7 D012694
- 650 _2
- $a transfekce $7 D014162
- 650 _2
- $a kationtové kanály TRP $x chemie $x genetika $x metabolismus $7 D050051
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Witschas, Katja $u Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.
- 700 1_
- $a Hynkova, Anna $u Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Prague 2, Czech Republic.
- 700 1_
- $a Zímová, Lucie $u Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.
- 700 1_
- $a Barvík, Ivan $u Division of Biomolecular Physics, Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2, Czech Republic.
- 700 1_
- $a Vlachova, Viktorie $u Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic. Electronic address: vlachova@biomed.cas.cz.
- 773 0_
- $w MED00003497 $t Neuropharmacology $x 1873-7064 $g Roč. 93, č. - (2015), s. 294-307
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25724085 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160408 $b ABA008
- 991 __
- $a 20160415130814 $b ABA008
- 999 __
- $a ok $b bmc $g 1113943 $s 934882
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 93 $c - $d 294-307 $e 20150225 $i 1873-7064 $m Neuropharmacology $n Neuropharmacology $x MED00003497
- LZP __
- $a Pubmed-20160408