-
Je něco špatně v tomto záznamu ?
Mass spectrometry analysis of the oxidation states of the pro-oncogenic protein anterior gradient-2 reveals covalent dimerization via an intermolecular disulphide bond
DJ. Clarke, E. Murray, J. Faktor, A. Mohtar, B. Vojtesek, CL. MacKay, PL. Smith, TR. Hupp,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- chemorezistence genetika MeSH
- cystein genetika metabolismus MeSH
- disulfidy chemie metabolismus MeSH
- DNA-helikasy chemie genetika metabolismus MeSH
- hmotnostní spektrometrie MeSH
- kyseliny sulfenové metabolismus MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- multimerizace proteinu genetika MeSH
- mutace MeSH
- nádory chemie genetika patologie MeSH
- oxidace-redukce * MeSH
- proteiny chemie genetika metabolismus MeSH
- sekvence aminokyselin genetika MeSH
- signální transdukce MeSH
- transportní proteiny chemie genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Anterior Gradient-2 (AGR2) is a component of a pro-oncogenic signalling pathway that can promote p53 inhibition, metastatic cell migration, limb regeneration, and cancer drug-resistance. AGR2 is in the protein-disulphide isomerase superfamily containing a single cysteine (Cys-81) that forms covalent adducts with its client proteins. We have found that mutation of Cysteine-81 attenuates its biochemical activity in its sequence-specific peptide docking function, reduces binding to Reptin, and reduces its stability in cells. As such, we evaluated how chemical oxidation of its cysteine affects its biochemical properties. Recombinant AGR2 spontaneously forms covalent dimers in the absence of reductant whilst DTT promotes dimer to monomer conversion. Mutation of Cysteine-81 to alanine prevents peroxide catalysed dimerization of AGR2 in vitro, suggesting a reactive cysteine is central to covalent dimer formation. Both biochemical assays and ESI mass spectrometry were used to demonstrate that low levels of a chemical oxidant promote an intermolecular disulphide bond through formation of a labile sulfenic acid intermediate. However, higher levels of oxidant promote sulfinic or sulfonic acid formation thus preventing covalent dimerization of AGR2. These data together identify the single cysteine of AGR2 as an oxidant responsive moiety that regulates its propensity for oxidation and its monomeric-dimeric state. This has implications for redox regulation of the pro-oncogenic functions of AGR2 protein in cancer cells.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16019999
- 003
- CZ-PrNML
- 005
- 20160722124853.0
- 007
- ta
- 008
- 160722s2016 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.bbapap.2016.02.011 $2 doi
- 024 7_
- $a 10.1016/j.bbapap.2016.02.011 $2 doi
- 035 __
- $a (PubMed)26876500
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Clarke, David J $u School of Chemistry, Edinburgh, Scotland EH4 2XR, United Kingdom. Electronic address: david.clarke@ed.ac.uk.
- 245 10
- $a Mass spectrometry analysis of the oxidation states of the pro-oncogenic protein anterior gradient-2 reveals covalent dimerization via an intermolecular disulphide bond / $c DJ. Clarke, E. Murray, J. Faktor, A. Mohtar, B. Vojtesek, CL. MacKay, PL. Smith, TR. Hupp,
- 520 9_
- $a Anterior Gradient-2 (AGR2) is a component of a pro-oncogenic signalling pathway that can promote p53 inhibition, metastatic cell migration, limb regeneration, and cancer drug-resistance. AGR2 is in the protein-disulphide isomerase superfamily containing a single cysteine (Cys-81) that forms covalent adducts with its client proteins. We have found that mutation of Cysteine-81 attenuates its biochemical activity in its sequence-specific peptide docking function, reduces binding to Reptin, and reduces its stability in cells. As such, we evaluated how chemical oxidation of its cysteine affects its biochemical properties. Recombinant AGR2 spontaneously forms covalent dimers in the absence of reductant whilst DTT promotes dimer to monomer conversion. Mutation of Cysteine-81 to alanine prevents peroxide catalysed dimerization of AGR2 in vitro, suggesting a reactive cysteine is central to covalent dimer formation. Both biochemical assays and ESI mass spectrometry were used to demonstrate that low levels of a chemical oxidant promote an intermolecular disulphide bond through formation of a labile sulfenic acid intermediate. However, higher levels of oxidant promote sulfinic or sulfonic acid formation thus preventing covalent dimerization of AGR2. These data together identify the single cysteine of AGR2 as an oxidant responsive moiety that regulates its propensity for oxidation and its monomeric-dimeric state. This has implications for redox regulation of the pro-oncogenic functions of AGR2 protein in cancer cells.
- 650 _2
- $a sekvence aminokyselin $x genetika $7 D000595
- 650 _2
- $a transportní proteiny $x chemie $x genetika $x metabolismus $7 D002352
- 650 _2
- $a cystein $x genetika $x metabolismus $7 D003545
- 650 _2
- $a DNA-helikasy $x chemie $x genetika $x metabolismus $7 D004265
- 650 _2
- $a disulfidy $x chemie $x metabolismus $7 D004220
- 650 _2
- $a chemorezistence $x genetika $7 D019008
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a MFC-7 buňky $7 D061986
- 650 _2
- $a hmotnostní spektrometrie $7 D013058
- 650 _2
- $a mutace $7 D009154
- 650 _2
- $a nádory $x chemie $x genetika $x patologie $7 D009369
- 650 12
- $a oxidace-redukce $7 D010084
- 650 _2
- $a multimerizace proteinu $x genetika $7 D055503
- 650 _2
- $a proteiny $x chemie $x genetika $x metabolismus $7 D011506
- 650 _2
- $a signální transdukce $7 D015398
- 650 _2
- $a kyseliny sulfenové $x metabolismus $7 D013434
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Murray, Euan $u University of Edinburgh, Institute of Genetics and Molecular Medicine, Division of Cancer Biology, Edinburgh, Scotland EH4 2XR, United Kingdom.
- 700 1_
- $a Faktor, Jakub $u Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic.
- 700 1_
- $a Mohtar, Aiman $u University of Edinburgh, Institute of Genetics and Molecular Medicine, Division of Cancer Biology, Edinburgh, Scotland EH4 2XR, United Kingdom.
- 700 1_
- $a Vojtesek, Borek $u Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic.
- 700 1_
- $a MacKay, C Logan $u School of Chemistry, Edinburgh, Scotland EH4 2XR, United Kingdom.
- 700 1_
- $a Smith, Pat Langridge $u School of Chemistry, Edinburgh, Scotland EH4 2XR, United Kingdom.
- 700 1_
- $a Hupp, Ted R $u University of Edinburgh, Institute of Genetics and Molecular Medicine, Division of Cancer Biology, Edinburgh, Scotland EH4 2XR, United Kingdom; Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic. Electronic address: ted.hupp@ed.ac.uk.
- 773 0_
- $w MED00009314 $t Biochimica et biophysica acta $x 0006-3002 $g Roč. 1864, č. 5 (2016), s. 551-61
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/26876500 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160722 $b ABA008
- 991 __
- $a 20160722125108 $b ABA008
- 999 __
- $a ok $b bmc $g 1154669 $s 944527
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 1864 $c 5 $d 551-61 $e 20160210 $i 0006-3002 $m Biochimica et biophysica acta $n Biochim Biophys Acta $x MED00009314
- LZP __
- $a Pubmed-20160722